欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知a∈R,則a=0是函數(shù)y=x2+ax+1為偶函數(shù)的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,則a=0是函數(shù)y=x2+ax+1為偶函數(shù)的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a∈R,則a=0是函數(shù)y=x2+ax+1為偶函數(shù)的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省溫州市八校聯(lián)考高三(上)期初數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知a∈R,則a=0是函數(shù)y=x2+ax+1為偶函數(shù)的( )
A.充要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時,f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
①直線l與曲線S相切且至少有兩個切點;
②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設(shè)x1是方程h(x)-x=0的實數(shù)根,若對于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西模擬 題型:解答題

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,y2),如果對于函數(shù)y=F(x)圖象上的點M(x0,y0)(其中x0=
x1+x2
2
)
總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年浙江省溫州市瑞安中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax+lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x,y),且x1<x<x2,使得曲線在點Q處的切線?∥P1P2,則稱?為弦P1P2的伴隨切線.特別地,當(dāng)x=λx1+(1-λ)x2(0<λ<1)時,又稱?為P1P2的λ-伴隨切線.
(ⅰ)求證:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年高考模擬數(shù)學(xué)專題:壓軸大題(解析版) 題型:解答題

已知函數(shù)f(x)=ax+lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x,y),且x1<x<x2,使得曲線在點Q處的切線?∥P1P2,則稱?為弦P1P2的伴隨切線.特別地,當(dāng)x=λx1+(1-λ)x2(0<λ<1)時,又稱?為P1P2的λ-伴隨切線.
(ⅰ)求證:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省濰坊市高考數(shù)學(xué)模擬試卷A(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax+lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x,y),且x1<x<x2,使得曲線在點Q處的切線?∥P1P2,則稱?為弦P1P2的伴隨切線.特別地,當(dāng)x=λx1+(1-λ)x2(0<λ<1)時,又稱?為P1P2的λ-伴隨切線.
(。┣笞C:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省重點中學(xué)協(xié)作體2012屆高三第一次聯(lián)考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x

(Ⅰ)求函數(shù)g(x)在區(qū)間(0,e]上的值域;

(Ⅱ)是否存在實數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由;

(Ⅲ)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,my2),如果對于函數(shù)y=F(x)圖象上的點M(x0,y0)(其中總能使得F(x1)-f(x2)=(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=f(x),有下列命題:
①若a∈[-2,2],則函數(shù)f(x)=
x2+ax+1
的定義域為R;
②若f(x)=log
1
2
(x2-3x+2)
,則f(x)的單調(diào)增區(qū)間為(-∞,
3
2
)
;
③若f(x)=
1
x2-x-2
,則值域是(-∞,0)∪(0,+∞);
④定義在R上的函數(shù)f(x),若對任意的x∈R都有f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個周期;
⑤已知a>0,b>0,則
1
a
+
1
b
+2
ab
的最小值是4.     
其中真命題的編號是
①④⑤
①④⑤

查看答案和解析>>


同步練習(xí)冊答案