定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]?{x},g(x)=x-1,若用d1,d2,d3分別表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的長度,則當0≤x≤2012時,有( 。| A.d1=2,d2=0,d3=2010 | B.d1=1,d2=1,d3=2010 | | C.d1=2,d2=1,d3=2009 | D.d1=2,d2=2,d3=2008 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
8、定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分別表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集區(qū)間的長度,則當0≤x≤2011時,有( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:朝陽區(qū)一模
題型:單選題
定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=x-1,若用d
1,d
2,d
3分別表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集區(qū)間的長度,則當0≤x≤2011時,有( 。
| A.d1=1,d2=2,d3=2008 | B.d1=1,d2=1,d3=2009 |
| C.d1=3,d2=5,d3=2003 | D.d1=2,d2=3,d3=2006 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2013年四川省內(nèi)江市高考數(shù)學(xué)一模試卷(理科)(解析版)
題型:選擇題
定義區(qū)間(a,b),[a,b),(a,b][a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如(1,2)∪(3,5)的長度為d=(2-1)+(5-3)=3,用[x]表示不超過x的最大整數(shù),記<x>=x-[x],其中x∈R.設(shè)f(x)=[x]•<x>,g(x)=2x-[x]-2,若d1,d2,d3分別表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的長度,則當0≤x≤2012時,有( )
A.d1=2,d2=0,d3=2010
B.d1=1,d2=1,d3=2010
C.d1=2,d2=1,d3=2009
D.d1=2,d2=2,d3=2008
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2013年中國人民大學(xué)附中高考數(shù)學(xué)沖刺試卷02(理科)(解析版)
題型:選擇題
定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分別表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集區(qū)間的長度,則當0≤x≤2011時,有( )
A.d1=1,d2=2,d3=2008
B.d1=1,d2=1,d3=2009
C.d1=3,d2=5,d3=2003
D.d1=2,d2=3,d3=2006
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2013年高考百天仿真沖刺數(shù)學(xué)試卷2(理科)(解析版)
題型:選擇題
定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分別表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集區(qū)間的長度,則當0≤x≤2011時,有( )
A.d1=1,d2=2,d3=2008
B.d1=1,d2=1,d3=2009
C.d1=3,d2=5,d3=2003
D.d1=2,d2=3,d3=2006
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011年北京市朝陽區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版)
題型:選擇題
定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分別表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集區(qū)間的長度,則當0≤x≤2011時,有( )
A.d1=1,d2=2,d3=2008
B.d1=1,d2=1,d3=2009
C.d1=3,d2=5,d3=2003
D.d1=2,d2=3,d3=2006
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:單選題
定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分別表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集區(qū)間的長度,則當0≤x≤2011時,有
- A.
d1=1,d2=2,d3=2008
- B.
d1=1,d2=1,d3=2009
- C.
d1=3,d2=5,d3=2003
- D.
d1=2,d2=3,d3=2006
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:單選題
定義區(qū)間(a,b),[a,b),(a,b][a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如(1,2)∪(3,5)的長度為d=(2-1)+(5-3)=3,用[x]表示不超過x的最大整數(shù),記<x>=x-[x],其中x∈R.設(shè)f(x)=[x]•<x>,g(x)=2x-[x]-2,若d1,d2,d3分別表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的長度,則當0≤x≤2012時,有
- A.
d1=2,d2=0,d3=2010
- B.
d1=1,d2=1,d3=2010
- C.
d1=2,d2=1,d3=2009
- D.
d1=2,d2=2,d3=2008
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2013•青島一模)定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]{x},g(x)=x-1,若用d表示不等式f(x)<g(x)解集區(qū)間的長度,則當0≤x≤3時,有( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義區(qū)間(c,d),[c,d),(c,d],[c,d]的長度均為d-c(d>c)已知實數(shù)a>b,則滿足
+≥1的x構(gòu)成的區(qū)間的長度之和為( 。
查看答案和解析>>