函數(shù)f(x)=e-x+ax存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是( )| A.(-∞,2] | B.(-∞,2) | C.(2,+∞) | D.[2,+∞) |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
6、函數(shù)f(x)=e-x+ax存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:南寧模擬
題型:單選題
函數(shù)f(x)=e
-x+ax存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是( 。
| A.(-∞,2] | B.(-∞,2) | C.(2,+∞) | D.[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2011年黑龍江省哈爾濱六中高考數(shù)學(xué)一模試卷(理科)(解析版)
題型:選擇題
函數(shù)f(x)=e-x+ax存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是( )
A.(-∞,2]
B.(-∞,2)
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2012年廣西南寧市高三第一次適應(yīng)性測(cè)試數(shù)學(xué)試卷(理科)(解析版)
題型:選擇題
函數(shù)f(x)=e-x+ax存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是( )
A.(-∞,2]
B.(-∞,2)
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:單選題
函數(shù)f(x)=e-x+ax存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是
- A.
(-∞,2]
- B.
(-∞,2)
- C.
(2,+∞)
- D.
[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:遼寧省期中題
題型:單選題
函數(shù)f(x)=e-x+ax存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=ex(ax+1)(e為自然對(duì)數(shù)的底,a∈R為常數(shù)).對(duì)于函數(shù)h(x)和g(x),若存在常數(shù)k,m,對(duì)于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)h(x),g(x)的分界線.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=ex(ax+1)(e為自然對(duì)數(shù)的底,a∈R為常數(shù)).對(duì)于函數(shù)h(x)和g(x),若存在常數(shù)k,m,對(duì)于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)h(x),g(x)的分界線.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)f(x)=ex(ax+1)(e為自然對(duì)數(shù)的底,a∈R為常數(shù)).對(duì)于函數(shù)h(x)和g(x),若存在常數(shù)k,m,對(duì)于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)h(x),g(x)的分界線.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:0128 模擬題
題型:解答題
已知函數(shù)f(x)=ex(ax+1)(e為自然對(duì)數(shù)的底,a∈R為常數(shù))。
(1)討論函數(shù)f(x)的單調(diào)性;
(2)對(duì)于函數(shù)h(x)和g(x),若存在常數(shù)k,m,對(duì)于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)h(x),g(x)的分界線,設(shè)a=1,問(wèn)函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出常數(shù)k,m。若不存在,說(shuō)明理由。
查看答案和解析>>