欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知m>2,點(m-1,y1),(m.y2),(m+1,y3)都在二次函數(shù)y=x2-2x的圖象上,則( 。
A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3
A
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知m>2,點(m-1,y1),(m.y2),(m+1,y3)都在二次函數(shù)y=x2-2x的圖象上,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西省寶雞市金臺區(qū)高一(上)11月質(zhì)量檢測數(shù)學試卷(解析版) 題型:選擇題

已知m>2,點(m-1,y1),(m.y2),(m+1,y3)都在二次函數(shù)y=x2-2x的圖象上,則( )
A.y1<y2<y3
B.y3<y2<y1
C.y1<y3<y2
D.y2<y1<y3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知m>2,點(m-1,y1),(m.y2),(m+1,y3)都在二次函數(shù)y=x2-2x的圖象上,則(  )
A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點C(4,0)和直線l:x=1,過動點P作PQ⊥l,垂足為Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0
;
(1)求點P的軌跡方程,
(2)過點C的直線m與點P的軌跡交于兩點M(x1,y1),N(x2,y2),其中x1x2>0,點B(1,0),若△BMN的面積為36
5
,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=2y上有兩個點A(x1,y1)B(x2,y2)且x1x2=-2m(m為定值且m>0).
(1)求證:線段AB與軸的交點為定點(0,m);
(2) (理科)過A,B兩點做拋物線的切線,求
PA
PB
夾角的取值范圍;
(文科)過A,B兩點做拋物線的切線,求兩切線夾角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的圖象過A(t1,y1)、B(t2,y2)兩點,且滿足a2+(y1+y2)a+y1y2=0.

(1)證明:y1=-a或y2=-a;

(2)證明:函數(shù)f(x)的圖像必與x軸有兩個交點;

(3)若關(guān)于x的不等式f(x)>0的解集為{x|x>m或x<n}(n<m<0),解關(guān)于x的不等式cx2-bx+a>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式
(Ⅰ)若函數(shù)f(x)在x=1處有極值,求a的值;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點.如果在曲線C上存在點M(x0,y0),使得:①數(shù)學公式;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.問函數(shù)f(x)是否存在“中值相依切線”,請說明理由;
(Ⅲ)求證:[(n+1)!]2>(n+1)e2(n-2)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源:邯鄲二模 題型:解答題

已知點C(4,0)和直線l:x=1,過動點P作PQ⊥l,垂足為Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0

(1)求點P的軌跡方程,
(2)過點C的直線m與點P的軌跡交于兩點M(x1,y1),N(x2,y2),其中x1x2>0,點B(1,0),若△BMN的面積為36
5
,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省瀘州市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)f(x)在x=1處有極值,求a的值;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點.如果在曲線C上存在點M(x,y),使得:①;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.問函數(shù)f(x)是否存在“中值相依切線”,請說明理由;
(Ⅲ)求證:[(n+1)!]2>(n+1)e2(n-2)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源:2010年湖北省黃岡市名校高考數(shù)學模擬試卷02(解析版) 題型:解答題

已知拋物線x2=2y上有兩個點A(x1,y1)B(x2,y2)且x1x2=-2m(m為定值且m>0).
(1)求證:線段AB與軸的交點為定點(0,m);
(2) (理科)過A,B兩點做拋物線的切線,求夾角的取值范圍;
(文科)過A,B兩點做拋物線的切線,求兩切線夾角的取值范圍.

查看答案和解析>>


同步練習冊答案