定義在R上的函數(shù)f(x)=Asin(ωx+φ),ω,φ均為實(shí)數(shù),則“f(0)?f(1)<0”是“f(x)在(0,1)內(nèi)有零點(diǎn)”的( )| A.充分不必要條件 | B.必要不充分條件 | | C.充要條件 | D.既非充分又非必要條件 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的函數(shù)f(x)=Asin(ωx+φ),ω,φ均為實(shí)數(shù),則“f(0)•f(1)<0”是“f(x)在(0,1)內(nèi)有零點(diǎn)”的( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
定義在R上的函數(shù)f(x)=Asin(ωx+φ),ω,φ均為實(shí)數(shù),則“f(0)•f(1)<0”是“f(x)在(0,1)內(nèi)有零點(diǎn)”的( )
| A.充分不必要條件 | B.必要不充分條件 |
| C.充要條件 | D.既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年浙江省溫州市瑞安中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版)
題型:選擇題
定義在R上的函數(shù)f(x)=Asin(ωx+φ),ω,φ均為實(shí)數(shù),則“f(0)•f(1)<0”是“f(x)在(0,1)內(nèi)有零點(diǎn)”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知定義在R上的函數(shù)f(x)=asin(ωx)+bcos(ωx),(ω>0)的周期為π,且
f( x )≤f( )=4.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)互不相等的實(shí)數(shù)x
1,x
2∈(0,2π),且f(x
1)=f(x
2)=-2,求x
1+x
2的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2010-2011學(xué)年浙江省寧波市龍賽中學(xué)高一(下)期中數(shù)學(xué)復(fù)習(xí)試卷1(必修4)(向量、三角函數(shù)和解三角形)(解析版)
題型:解答題
已知定義在R上的函數(shù)f(x)=asin(ωx)+bcos(ωx),(ω>0)的周期為π,且

.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)互不相等的實(shí)數(shù)x
1,x
2∈(0,2π),且f(x
1)=f(x
2)=-2,求x
1+x
2的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知定義在R上的函數(shù)f(x)=asin(ωx)+bcos(ωx),(ω>0)的周期為π,且
f( x )≤f( )=4.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)互不相等的實(shí)數(shù)x
1,x
2∈(0,2π),且f(x
1)=f(x
2)=-2,求x
1+x
2的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0)的周期為π,且對(duì)一切x∈R,都有f(x)
≤f()=4;
(1)求函數(shù)f(x)的表達(dá)式;
(2)若g(x)=f(
-x),求函數(shù)g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0,a>0,b>0)的周期為π,
f()=,且f(x)的最大值為2.
(1)寫出f(x)的表達(dá)式;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間、對(duì)稱中心、對(duì)稱軸方程;
(3)說明f(x)的圖象如何由函數(shù)y=2sinx的圖象經(jīng)過怎樣的變換得到.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知定義在R上的函數(shù)f(x)=asinωx+bcosωx+m(ω>0)的周期為π,且對(duì)?x∈R,都有
.
(1)求f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間[0,π]存在兩個(gè)不同的零點(diǎn)x1、x2,求參數(shù)m的范圍,并求這兩個(gè)零點(diǎn)之和x1+x2.
查看答案和解析>>