欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

對于定義域為R的偶函數(shù)f(x),定義域為R的奇函數(shù)g(x),都有(  )
A.f(-x)-f(x)>0B.g(-x)-g(x)>0
C.g(-x)g(x)≥0D.f(-x)g(-x)+f(x)g(x)=0
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為R的偶函數(shù)f(x),定義域為R的奇函數(shù)g(x),都有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于定義域為R的偶函數(shù)f(x),定義域為R的奇函數(shù)g(x),都有( 。
A.f(-x)-f(x)>0B.g(-x)-g(x)>0
C.g(-x)g(x)≥0D.f(-x)g(-x)+f(x)g(x)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省哈師大附中高一(上)10月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

對于定義域為R的偶函數(shù)f(x),定義域為R的奇函數(shù)g(x),都有( )
A.f(-x)-f(x)>0
B.g(-x)-g(x)>0
C.g(-x)g(x)≥0
D.f(-x)g(-x)+f(x)g(x)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

對于定義域為R的偶函數(shù)f(x),定義域為R的奇函數(shù)g(x),都有


  1. A.
    f(-x)-f(x)>0
  2. B.
    g(-x)-g(x)>0
  3. C.
    g(-x)g(x)≥0
  4. D.
    f(-x)g(-x)+f(x)g(x)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的偶函數(shù)f(x)滿足:對于任意實數(shù)x,都有f(1+x)=f(1-x),且當(dāng)0≤x≤1時,f(x)=3x+1+2x.
(1)求證:對于任意實數(shù)x,都有f(x+2)=f(x);
(2)當(dāng)x∈[1,3]時,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關(guān)于x的不等式[f(
kx+2
2
x2+4
)]2≥2
,其中k∈(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域為R的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關(guān)于x的不等式數(shù)學(xué)公式,其中k∈(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域為R的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關(guān)于x的不等式[f(
kx+2
2
x2+4
)]2≥2
,其中k∈(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省“9+4”聯(lián)合體高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知定義域為R的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關(guān)于x的不等式,其中k∈(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時f(x)<0恒成立.
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應(yīng)滿足的條件;(3)解關(guān)于x的不等式
1
n
f(ax2)-f(x)>
1
n
f(a2x)-f(a)
,(n是一個給定的自然數(shù),a<0)

查看答案和解析>>


同步練習(xí)冊答案