設(shè)定點(diǎn)F1(0,-4)、F2(0,4),動(dòng)點(diǎn)P滿(mǎn)足條件|PF1|+|PF2|=a+
|
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 16 |
| a |
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題
| 16 |
| a |
| A.橢圓 | B.線(xiàn)段 | C.不存在 | D.橢圓或線(xiàn)段 |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州市高二(上)期末數(shù)學(xué)試卷(期末)(解析版) 題型:選擇題
科目:高中數(shù)學(xué) 來(lái)源: 題型:
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題
| A.橢圓 | B.直線(xiàn) | C.圓 | D.線(xiàn)段 |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版選修2-1 2.1曲線(xiàn)與方程練習(xí)卷(解析版) 題型:解答題
(14分)設(shè)F1、F2分別為橢圓C:
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線(xiàn)PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線(xiàn)
寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.
科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(14分)設(shè)F1、F2分別為橢圓C:
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線(xiàn)PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.試對(duì)雙曲線(xiàn)
寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明.
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com