已知點(diǎn)P(3,-1)和Q(-1,2)在直線ax+2y=1的同側(cè),則實(shí)數(shù)a的取值范圍是( )| A.(1,3) | B.(-∞,1)∪(3,+∞) | C.(-∞,1) | D.(3,+∞) |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
10、已知點(diǎn)P(3,-1)和Q(-1,2),直線l:ax+2y-1=0與線段PQ有公共點(diǎn),則實(shí)數(shù)a的取值范圍為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知點(diǎn)P(3,-1)和Q(-1,2)在直線ax+2y=1的同側(cè),則實(shí)數(shù)a的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點(diǎn)P(3,-1)和Q(-1,2)在直線ax+2y=1的同側(cè),則實(shí)數(shù)a的取值范圍是( )
| A.(1,3) | B.(-∞,1)∪(3,+∞) | C.(-∞,1) | D.(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年福建省泉州市晉江市季延中學(xué)高二(下)期末數(shù)學(xué)試卷(文科)(解析版)
題型:選擇題
已知點(diǎn)P(3,-1)和Q(-1,2)在直線ax+2y=1的同側(cè),則實(shí)數(shù)a的取值范圍是( )
A.(1,3)
B.(-∞,1)∪(3,+∞)
C.(-∞,1)
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011年高三數(shù)學(xué)精品復(fù)習(xí)13:直線的方程、兩條直線的位置關(guān)系、線性規(guī)劃(解析版)
題型:選擇題
已知點(diǎn)P(3,-1)和Q(-1,2),直線l:ax+2y-1=0與線段PQ有公共點(diǎn),則實(shí)數(shù)a的取值范圍為( )
A.1≤a≤3
B.a(chǎn)≤1或a≥3
C.a(chǎn)≤1
D.a(chǎn)≥3
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:單選題
已知點(diǎn)P(3,-1)和Q(-1,2),直線l:ax+2y-1=0與線段PQ有公共點(diǎn),則實(shí)數(shù)a的取值范圍為
- A.
1≤a≤3
- B.
a≤1或a≥3
- C.
a≤1
- D.
a≥3
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年湖南省張家界市桑植一中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
已知點(diǎn)P(3,0),點(diǎn)A、B分別在x軸負(fù)半軸和y軸上,且

•

=0,點(diǎn)C滿足

=2

,當(dāng)點(diǎn)B在y軸上移動時(shí),記點(diǎn)C的軌跡為E.
(1)求曲線E的方程;
(2)過點(diǎn)Q(1,0)且斜率為k的直線l交曲線E于不同的兩點(diǎn)M、N,若D(-1,0),且

•

>0,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知點(diǎn)P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點(diǎn),若對于任意實(shí)數(shù)x1,x2,當(dāng)x1+x2=0時(shí),以P,Q為切點(diǎn)分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時(shí)函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點(diǎn),過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點(diǎn),直線x=6與x軸交于C點(diǎn),求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2010-2011學(xué)年湖北省荊州中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知點(diǎn)P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點(diǎn),若對于任意實(shí)數(shù)x1,x2,當(dāng)x1+x2=0時(shí),以P,Q為切點(diǎn)分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時(shí)函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點(diǎn),過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點(diǎn),直線x=6與x軸交于C點(diǎn),求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知點(diǎn)P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點(diǎn),若對于任意實(shí)數(shù)x1,x2,當(dāng)x1+x2=0時(shí),以P,Q為切點(diǎn)分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時(shí)函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點(diǎn),過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點(diǎn),直線x=6與x軸交于C點(diǎn),求△ABC的面積的最大值.
查看答案和解析>>