若函數(shù)f(x)=(a,b為常數(shù))在區(qū)間(0,+∞)上是減函數(shù),則( 。| A.a(chǎn)>-1 | B.a(chǎn)<-1 | C.b>0 | D.b<0 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
若函數(shù)
f(x)=(a,b為常數(shù))在區(qū)間(0,+∞)上是減函數(shù),則( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)
f(x)=(a,b為常數(shù))在區(qū)間(0,+∞)上是減函數(shù),則( )
| A.a(chǎn)>-1 | B.a(chǎn)<-1 | C.b>0 | D.b<0 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0),滿足條件f(1+x)=f(1-x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)當(dāng)x∈[1,2]時,求f(x)的值域;
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=ax+(其中a,b為常數(shù))的圖象經(jīng)過(1,2),
(2,)兩點(diǎn).
(1)求函數(shù)f(x)的解析式;
(2)證明函數(shù)在[1,+∞)上是增函數(shù);
(3)若不等式
-2a≥f(x)對任意的
x∈[,3]恒成立,求實(shí)數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0)滿足f(1-x)=f(1+x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=1-2f(x)(x>1)的反函數(shù)為g-1(x),若g-1(22x)>m(3-2x)對x∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0),滿足條件f(1+x)=f(1-x),且方程f(x)=x有兩個相等實(shí)根.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[m,m+1]上是單調(diào)函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=x3+ax2+bx(a,b∈R).
(Ⅰ)若曲線C:y=f(x)經(jīng)過點(diǎn)P(1,2),曲線C在點(diǎn)P處的切線與直線2x-y+3=0平行,求a,b的值;
(Ⅱ)在(Ⅰ)的條件下,試求函數(shù)
g(x)=(m2-1)[f(x)-x](m為實(shí)常數(shù),m≠±1)的極大值與極小值之差.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0)滿足f(1-x)=f(1+x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=1-2f(x)(x>1)的反函數(shù)為g-1(x),若g-1(22x)>m(3-2x)對x∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0)滿足f(1-x)=f(1+x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=1-2f(x)(x>1)的反函數(shù)為g-1(x),若g-1(22x)>m(3-2x)對x∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0)滿足f(1-x)=f(1+x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=1-2f(x)(x>1)的反函數(shù)為g-1(x),若g-1(22x)>m(3-2x)對x∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>