欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

對于中心在原點,且對稱軸是坐標軸的雙曲線的標準方程,若已知a=6,b=8,則其方程為( 。
A.
x2
36
-
y2
64
=1
B.
x2
64
-
y2
36
=1
C.
x2
36
-
y2
64
=1
y2
36
-
x2
64
=1
D.
y2
36
-
x2
64
=1
相關習題

科目:高中數(shù)學 來源: 題型:

對于中心在原點,且對稱軸是坐標軸的雙曲線的標準方程,若已知a=6,b=8,則其方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于中心在原點,且對稱軸是坐標軸的雙曲線的標準方程,若已知a=6,b=8,則其方程為( 。
A.
x2
36
-
y2
64
=1
B.
x2
64
-
y2
36
=1
C.
x2
36
-
y2
64
=1
y2
36
-
x2
64
=1
D.
y2
36
-
x2
64
=1

查看答案和解析>>

科目:高中數(shù)學 來源:2005-2006學年北京市宣武區(qū)高二(上)期末數(shù)學試卷(解析版) 題型:選擇題

對于中心在原點,且對稱軸是坐標軸的雙曲線的標準方程,若已知a=6,b=8,則其方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點,對稱軸為坐標軸的橢圓T經(jīng)過P(1,
6
3
),Q(
2
,
3
3
)

(I)求橢圓T的標準方程;
(II)橢圓T上是否存在點E(m,n)使得直線l:x=my+n交橢圓于M,N兩點,且
OM
ON
=0
?若存在求出點E坐標;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知中心在坐標原點,坐標軸為對稱軸的橢圓C和等軸雙曲線C1,點數(shù)學公式在曲線C1上,橢圓C的焦點是雙曲線C1的頂點,且橢圓C與y軸正半軸的交點M到直線數(shù)學公式的距離為4.
(Ⅰ)求雙曲線C1和橢圓C的標準方程;
(Ⅱ)直線x=2與橢圓C相交于P、Q兩點,A、B是橢圓上位于直線PQ兩側(cè)的兩動點,若直線AB的斜率為數(shù)學公式,求四邊形APBQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:福建省模擬題 題型:解答題

已知中心在坐標原點,以坐標軸為對稱軸的雙曲線C過點,且點Q在x軸上的射影恰為該雙曲線的一個焦點F,
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓的一個焦點F作與x軸不垂直的任意直線l交橢圓于A.B兩點,線段AB的垂直平分線交x軸于點M,則為定值,且定值是”。命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F,M兩點間的距離的比值.
試類比上述命題,寫出一個關于雙曲線C的類似的正確命題,并加以證明;
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明)。

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省年高考數(shù)學壓軸卷(文科)(解析版) 題型:解答題

已知中心在坐標原點,坐標軸為對稱軸的橢圓C和等軸雙曲線C1,點在曲線C1上,橢圓C的焦點是雙曲線C1的頂點,且橢圓C與y軸正半軸的交點M到直線的距離為4.
(Ⅰ)求雙曲線C1和橢圓C的標準方程;
(Ⅱ)直線x=2與橢圓C相交于P、Q兩點,A、B是橢圓上位于直線PQ兩側(cè)的兩動點,若直線AB的斜率為,求四邊形APBQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點,以兩條坐標軸為對稱軸,離心率是
2
,兩準線間的距離大于
2
,且雙曲線上動點P到A(2,0)的最近距離為1.
(Ⅰ)求證:該雙曲線的焦點不在y軸上;
(Ⅱ)求雙曲線的方程;
(Ⅲ)如果斜率為k的直線L過點M(0,3),與該雙曲線交于A、B兩點,若
AM
MB
(λ>0)
,試用l表示k2,并求當λ∈[
1
2
,2]
時,k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點,以兩條坐標軸為對稱軸,離心率是,兩準線間的距離大于,且雙曲線上動點P到A(2,0)的最近距離為1。

(Ⅰ)求證:該雙曲線的焦點不在y軸上;

(Ⅱ)求雙曲線的方程;

(Ⅲ)如果斜率為k的直線L過點M(0,3),與該雙曲線交于A、B兩點,若,試用l表示k2,并求當時,k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2007年北京市豐臺區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知雙曲線的中心在原點,以兩條坐標軸為對稱軸,離心率是,兩準線間的距離大于,且雙曲線上動點P到A(2,0)的最近距離為1.
(Ⅰ)求證:該雙曲線的焦點不在y軸上;
(Ⅱ)求雙曲線的方程;
(Ⅲ)如果斜率為k的直線L過點M(0,3),與該雙曲線交于A、B兩點,若,試用l表示k2,并求當時,k的取值范圍.

查看答案和解析>>


同步練習冊答案