欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

以下4種關(guān)于質(zhì)數(shù)和合數(shù)的說法中,準(zhǔn)確的說法共有( 。
①兩個質(zhì)數(shù)的和必為合數(shù)
②兩個合數(shù)的和必為合數(shù)
③一個質(zhì)數(shù)與一個合數(shù)的和必為合數(shù)
④一個質(zhì)數(shù)與一個合數(shù)的和必非合數(shù).
A.3B.2C.1D.0
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)函數(shù)要會“看圖說話”
“數(shù)形結(jié)合”是初中重要的數(shù)學(xué)思想方法,在函數(shù)一章的學(xué)習(xí)中,掌握這種思想方法顯得特別重要,在分析和解決函數(shù)問題時,要學(xué)會由數(shù)想形、以形助數(shù),借助函數(shù)的圖象研究其數(shù)量關(guān)系,描述其性質(zhì).當(dāng)你掌握了“看圖說話”的本領(lǐng)后,解決函數(shù)問題就會感覺到簡捷、輕快!
如:甲、乙兩人(甲騎自行車,乙騎摩托車)從A城出發(fā)到B城旅行,下圖表示甲、乙兩人離開A城的路程與時間之間的函數(shù)圖象,根據(jù)圖象,你能得到關(guān)于甲、乙兩人旅行的哪些信息?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

學(xué)函數(shù)要會“看圖說話”
“數(shù)形結(jié)合”是初中重要的數(shù)學(xué)思想方法,在函數(shù)一章的學(xué)習(xí)中,掌握這種思想方法顯得特別重要,在分析和解決函數(shù)問題時,要學(xué)會由數(shù)想形、以形助數(shù),借助函數(shù)的圖象研究其數(shù)量關(guān)系,描述其性質(zhì).當(dāng)你掌握了“看圖說話”的本領(lǐng)后,解決函數(shù)問題就會感覺到簡捷、輕快!
如:甲、乙兩人(甲騎自行車,乙騎摩托車)從A城出發(fā)到B城旅行,下圖表示甲、乙兩人離開A城的路程與時間之間的函數(shù)圖象,根據(jù)圖象,你能得到關(guān)于甲、乙兩人旅行的哪些信息?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實,那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2
精英家教網(wǎng)
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設(shè)計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實,那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為數(shù)學(xué)公式,即1+2+3+4+…+n=數(shù)學(xué)公式
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設(shè)計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省期中題 題型:解答題

數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.例如,求1+2+3+4+…+n的值,其中n是正整數(shù).對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實,那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為,即1+2+3+4+…+n=。
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設(shè)計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù)。(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

以下4種關(guān)于質(zhì)數(shù)和合數(shù)的說法中,準(zhǔn)確的說法共有(  )
①兩個質(zhì)數(shù)的和必為合數(shù)
②兩個合數(shù)的和必為合數(shù)
③一個質(zhì)數(shù)與一個合數(shù)的和必為合數(shù)
④一個質(zhì)數(shù)與一個合數(shù)的和必非合數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

以下4種關(guān)于質(zhì)數(shù)和合數(shù)的說法中,準(zhǔn)確的說法共有( 。
①兩個質(zhì)數(shù)的和必為合數(shù)
②兩個合數(shù)的和必為合數(shù)
③一個質(zhì)數(shù)與一個合數(shù)的和必為合數(shù)
④一個質(zhì)數(shù)與一個合數(shù)的和必非合數(shù).
A.3B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(12分)閱讀下列材料,回答問題:
材料一 西方國家實行的代議制度,是一種間接民主的形式,其核心是經(jīng)過選舉產(chǎn)生的代表組成的議會,它形式上代表民意行使國家權(quán)力。由于各國的政體不同,議會在國家政權(quán)組織體系中的地位和作用也有所不同。
(1)結(jié)合所學(xué)知識,舉例說明西方代議制民主政治的政體形式有哪些?(2分)
材料二 西方議會擁有立法權(quán)、通過國家預(yù)算權(quán)和監(jiān)督權(quán)等權(quán)力。議會決定事項如法案或其他議案,均由議員共同討論并經(jīng)多數(shù)通過。由于議員的職責(zé)是具體行使議會的職權(quán),這就要求議員必須具備相應(yīng)的立法知識和能力,具有參政議政的素質(zhì)和經(jīng)驗。過去,有些西方國家在議會至上的思想支配下,賦予議會很大權(quán)力,英國曾有“議會萬能”之說,認(rèn)為議會“除了不能把女人變成男人和把男人變成女人外,在法律上什么都能做到”。
(2)材料二中英國的“議會萬能”之說對嗎?請簡要說明理由。(2分)
材料三 美國的開國者們因為長久的自治傳統(tǒng),……使他們對一個坐擁大權(quán)的政治首腦懷有極大的憂慮,……因此他們想方設(shè)法地約束總統(tǒng)權(quán)力。不僅是司法、立法制度上的約束,甚至在憲法中加上了彈劾權(quán),但需要多數(shù)眾議院議員提出彈劾,2/3參議員同意后才能加以定罪并于罷免。在美國歷史上有三位總統(tǒng)面臨過彈劾。……美國國會山上的白色建筑讓每一位總統(tǒng)的心頭都懸著“達(dá)摩克里斯”之劍。
(3)根據(jù)材料三并結(jié)合所學(xué)知識指出美國總統(tǒng)與國會之間的關(guān)系。(2分)這種關(guān)系對當(dāng)時美國產(chǎn)生了什么積極作用? (2分)
(4)根據(jù)上述材料,試分析資產(chǎn)階級代議制在歷史發(fā)展中的進(jìn)步性與局限性。(4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

我國著名數(shù)學(xué)家華羅庚曾說過:撌?斃問鄙僦憊郟?紊偈?蹦訝胛;?謂岷習(xí)侔愫茫?衾敕旨彝蚴灤輸.?dāng)?shù)學(xué)中,數(shù)和形是兩個最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.

數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.

例如,求1234+…+n的值,其中n是正整數(shù).

對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.

如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實,那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1234+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,23,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1234+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為nn1)個,因此,組成一個三角形小圓圈的個數(shù)為,即1234+…+n

(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計相關(guān)圖形,求1357+…+(2n1)的值,其中 n 是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

(2)試設(shè)計另外一種圖形,求1357+…+(2n1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

我國著名數(shù)學(xué)家華羅庚曾說過:數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結(jié)合百般好,隔離分家萬事休.?dāng)?shù)學(xué)中,數(shù)和形是兩個最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.

數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.

例如,求1234n的值,其中n是正整數(shù).

對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進(jìn)行討論.

如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實,那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1234n 的值,方案如下:如圖,斜線左邊的三角形圖案 是由上到下每層依次分別為1,2,3,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1234n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n1)個,因此,組成一個三角形小圓圈的個數(shù)為,即

(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計相關(guān)圖形,求1357(2n1)的值,其中 n 是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

(2)試設(shè)計另外一種圖形,求1357(2n1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>


同步練習(xí)冊答案