欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若曲線y=f(x)在點(x0,f(x0))處的切線方程為2x+y+1=0,則(  )
A.f′(x0)>0B.f′(x0)=0C.f′(x0)<0D.f′(x0)不存在
相關習題

科目:高中數(shù)學 來源: 題型:

若曲線y=f(x)在點(x0,f(x0))處的切線方程為y=2x-1,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線y=f(x)在點(x0,f(x0))處的切線方程為2x+y+1=0,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線y=f(x)在點(x0,f(x0))處的切線方程為y=2x-1,則( 。
A.f′(x0)=0B.f′(x0)>0C.f′(x0)<0D.f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線y=f(x)在點(x0,f(x0))處的切線方程為2x+y+1=0,則( 。
A.f′(x0)>0B.f′(x0)=0C.f′(x0)<0D.f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若曲線y=f(x)在點(x0,f(x0))處的切線方程為2x+y+1=0,則


  1. A.
    f′(x0)>0
  2. B.
    f′(x0)=0
  3. C.
    f′(x0)<0
  4. D.
    f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆浙江省、蘭溪一中高二下期中理科數(shù)學試卷(解析版) 題型:解答題

(1)已知函數(shù)f(x)=x-ax+(a-1),。討論函數(shù)的單調性;       

(2).已知函數(shù)f (x)=lnx,g(x)=ex.設直線l為函數(shù) yf (x) 的圖象上一點A(x0,f (x0))處的切線.問在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線y=g(x)也相切.若存在,這樣的x0有幾個?,若沒有,則說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)已知函數(shù)f(x)=x-ax+(a-1),。討論函數(shù)的單調性;       
(2).已知函數(shù)f (x)=lnxg(x)=ex.設直線l為函數(shù) yf (x) 的圖象上一點A(x0,f (x0))處的切線.問在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線y=g(x)也相切.若存在,這樣的x0有幾個?,若沒有,則說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞).
(Ⅰ)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,過坐標原點O向曲線C1作切線,切點為B(n,t)(n>0),求點B的坐標;
(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實數(shù)a的取值范圍;
(Ⅲ)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學 來源:天津月考題 題型:解答題

已知函數(shù)
(Ⅰ)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內為增函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設函數(shù),若在[1,e]上至少存在一點x0,使得
f(x0)≥g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:汕頭二模 題型:解答題

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O向曲線C1作切線,切點為B(n,t)(n>0),設曲線C1在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值;
(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實數(shù)a的取值范圍;
(Ⅲ)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>


同步練習冊答案