| 曲線y=2x2-2x在點(diǎn)(1,0)處的切線的斜率為( 。 |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
曲線y=2x2-2x在點(diǎn)(1,0)處的切線的斜率為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
曲線y=2x
2-2x在點(diǎn)(1,0)處的切線的斜率為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2010-2011學(xué)年重慶市楊家坪中學(xué)高三(上)11月月考數(shù)學(xué)試卷(文科)(解析版)
題型:選擇題
曲線y=2x2-2x在點(diǎn)(1,0)處的切線的斜率為( )
A.1
B.4
C.5
D.2
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=x3-2x2+1
(Ⅰ)求函數(shù)f(x)在[-1,2]上的最大值和最小值;
(Ⅱ)曲線f(x)上是否存在一點(diǎn)P,使得在點(diǎn)P處的切線平行于直線2x+y+3=0?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=x3-2x2+1
(Ⅰ)求函數(shù)f(x)在[-1,2]上的最大值和最小值;
(Ⅱ)曲線f(x)上是否存在一點(diǎn)P,使得在點(diǎn)P處的切線平行于直線2x+y+3=0?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)f(x)=x3-2x2+1
(Ⅰ)求函數(shù)f(x)在[-1,2]上的最大值和最小值;
(Ⅱ)曲線f(x)上是否存在一點(diǎn)P,使得在點(diǎn)P處的切線平行于直線2x+y+3=0?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2010-2011學(xué)年北京市海淀區(qū)高二(下)期中數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
已知函數(shù)f(x)=x3-2x2+1
(Ⅰ)求函數(shù)f(x)在[-1,2]上的最大值和最小值;
(Ⅱ)曲線f(x)上是否存在一點(diǎn)P,使得在點(diǎn)P處的切線平行于直線2x+y+3=0?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=ex-a(x-1),x∈R,其中a為實(shí)數(shù).
(1)若實(shí)數(shù)a>0,求函數(shù)f(x)在(0,+∞)上的極值.
(2)記函數(shù)g(x)f(2x),設(shè)函數(shù)y=g(x)的圖象C與y軸交于P點(diǎn),曲線C在P點(diǎn)處的切線與兩坐標(biāo)軸所圍成的圖形的面積為S(a),當(dāng)a>1時(shí),求S(a)的最小值;
(3)當(dāng)x∈(0,+∞)時(shí),不等式f(x)+f′(x)+x3-2x2≥0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=ex-a(x-1),x∈R,其中a為實(shí)數(shù).
(1)若實(shí)數(shù)a>0,求函數(shù)f(x)在(0,+∞)上的極值.
(2)記函數(shù)g(x)f(2x),設(shè)函數(shù)y=g(x)的圖象C與y軸交于P點(diǎn),曲線C在P點(diǎn)處的切線與兩坐標(biāo)軸所圍成的圖形的面積為S(a),當(dāng)a>1時(shí),求S(a)的最小值;
(3)當(dāng)x∈(0,+∞)時(shí),不等式f(x)+f′(x)+x3-2x2≥0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>