定義域為R的函數(shù)f(x)對任意x∈R都有f(x)=f(4-x),且其導函數(shù)f′(x)滿足(x-2)f′(x)>0,則當2<a<4時,有( )| A.f(2a)<f(2)<f(log2a) | B.f(2)<f(2a)<f(log2a) | | C.f(2)<f(log2a)<f(2a) | D.f(log2a)<f(2a)<f(2) |
|
相關習題
科目:高中數(shù)學
來源:
題型:
定義域為R的函數(shù)f(x)對任意x都有f(2+x)=f(2-x),且其導函數(shù)f′(x)滿足
>0,則當2<a<4時,有( 。
| A、f(2a)<f(2)<f(log2a) |
| B、f(2)<f(2a)<f(log2a) |
| C、f(2)<f(log2a)<f(2a) |
| D、f(log2a)<f(2a)<f(2) |
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:
定義域為R的函數(shù)f(x)對任意x都有f(2+x)=f(2-x),且其導函數(shù)f
′(x)滿足
>0,則當2<a<4,有( 。
| A、f(2a)<f(log2a)<f(2) |
| B、f(log2a)<f(2)<f(2a) |
| C、f(2a)<f(2)<f(log2a) |
| D、f(log2a)<f(2a)<f(2) |
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:
定義域為R的函數(shù)f(x)對任意x都有f(2+x)=f(2-x),且其導函數(shù)f′(x)滿足
>0,則當2<a<4時f(2
a),f(2),f(log
2a)的大小關系為
.
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:
定義域為R的函數(shù)f(x)對任意x∈R都有f(x)=f(4-x),且其導函數(shù)f′(x)滿足(x-2)f′(x)>0,則當2<a<4時,有( 。
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:
定義域為R的函數(shù)f(x)對任意x都有f(x)=f(4-x),若x∈[2,+∞)時,f(x)單調遞增,則當2<a<4時,有( 。
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:解答題
定義域為R的函數(shù)f(x)對任意x都有f(2+x)=f(2-x),且其導函數(shù)f′(x)滿足
>0,則當2<a<4時f(2a),f(2),f(log2a)的大小關系為________.
查看答案和解析>>
科目:高中數(shù)學
來源:三亞模擬
題型:單選題
定義域為R的函數(shù)f(x)對任意x都有f(2+x)=f(2-x),且其導函數(shù)f
′(x)滿足
>0,則當2<a<4,有( )
| A.f(2a)<f(log2a)<f(2) | B.f(log2a)<f(2)<f(2a) |
| C.f(2a)<f(2)<f(log2a) | D.f(log2a)<f(2a)<f(2) |
查看答案和解析>>
科目:高中數(shù)學
來源:永州一模
題型:單選題
定義域為R的函數(shù)f(x)對任意x都有f(2+x)=f(2-x),且其導函數(shù)f′(x)滿足
>0,則當2<a<4時,有( 。
| A.f(2a)<f(2)<f(log2a) | B.f(2)<f(2a)<f(log2a) |
| C.f(2)<f(log2a)<f(2a) | D.f(log2a)<f(2a)<f(2) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
定義域為R的函數(shù)f(x)對任意x∈R都有f(x)=f(4-x),且其導函數(shù)f′(x)滿足(x-2)f′(x)>0,則當2<a<4時,有( )
| A.f(2a)<f(2)<f(log2a) | B.f(2)<f(2a)<f(log2a) |
| C.f(2)<f(log2a)<f(2a) | D.f(log2a)<f(2a)<f(2) |
查看答案和解析>>
科目:高中數(shù)學
來源:2012-2013學年山東省臨沂市映達高考補習學校高三一輪復習期中迎考數(shù)學模擬試卷1(理科)(解析版)
題型:選擇題
定義域為R的函數(shù)f(x)對任意x都有f(x)=f(4-x),若x∈[2,+∞)時,f(x)單調遞增,則當2<a<4時,有( )
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.f(2)<f(log2a)<f(2a)
D.f(log2a)<f(2a)<f(2)
查看答案和解析>>