欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知數(shù)列{an}的通項(xiàng)an=2n-3,n∈N*,其前n項(xiàng)和為Sn,則使Sn>48成立的n的最小值為( 。
A.7B.8C.9D.10
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)an=2n-3,n∈N*,其前n項(xiàng)和為Sn,則使Sn>48成立的n的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}的通項(xiàng)an=2n-3,n∈N*,其前n項(xiàng)和為Sn,則使Sn>48成立的n的最小值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)an=2n-1(n=1,2,3,…),現(xiàn)將其中所有的完全平方數(shù)(即正整數(shù)的平方)抽出按從小到大的順序排列成一個(gè)新的數(shù)列{bn}.
(1)若bk=am,則正整數(shù)m關(guān)于正整數(shù)k的函數(shù)表達(dá)式為m=
2k2-2k+1
2k2-2k+1

(2)記Sn是數(shù)列{an}的前n項(xiàng)和,則
Snnbn
能取到的最大值等于
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南師大附中高三第四次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知數(shù)列{an}的通項(xiàng)an=2n-1(n=1,2,3,…),現(xiàn)將其中所有的完全平方數(shù)(即正整數(shù)的平方)抽出按從小到大的順序排列成一個(gè)新的數(shù)列{bn}.
(1)若bk=am,則正整數(shù)m關(guān)于正整數(shù)k的函數(shù)表達(dá)式為m=   
(2)記Sn是數(shù)列 能取到的最大值等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的通項(xiàng)公式為an=(2n-1)•2n,我們用錯(cuò)位相減法求其前n項(xiàng)和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,兩式項(xiàng)減得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.類比推廣以上方法,若數(shù)列{bn}的通項(xiàng)公式為bn=n2•2n,
則其前n項(xiàng)和Tn=
(n2-2n+3)•2n+1-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n-1
(1)求證:{an}是等差數(shù)列;
(2)求{an}的前n項(xiàng)和Sn
(3)設(shè)bn=
Sn
n
,試求
1
b1b2
+
1
b2b3
+…+
1
bn-1bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n-1+1.
(1)若Sn=a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn,(n∈N*),求證:當(dāng)n為偶數(shù)時(shí),Sn-2n-4n-1能被64整除.
(2)是不是存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=n(an-1)對(duì)一切n∈N*都成立?若存在,求數(shù)列{bn}的通項(xiàng)公式;若不存在,則請(qǐng)說(shuō)明理由.
(3)記Tn=1!Cn1+2!Cn2+3!Cn3+…+n!Cnn(n=1,2,3,…),當(dāng)n≥2時(shí),求證:(1+
1
T1
)(1+
1
T2
)(1+
1
T3
)…(1+
1
Tn
)≤3-
1
1+log2(an-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
3+2n當(dāng)1≤n≤5時(shí)
3•2n當(dāng)n≥6時(shí)
,則數(shù)列{an}的前n項(xiàng)和Sn=
n2+4n
3•2n+1-147
1≤n≤5
n≥6
n2+4n
3•2n+1-147
1≤n≤5
n≥6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)為an=(2n-1)•2n,求其前n項(xiàng)和Sn時(shí),我們用錯(cuò)位相減法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
兩式相減得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1,
求出Sn=2-(2-2n)•2n+1.類比推廣以上方法,若數(shù)列{bn}的通項(xiàng)為bn=n2•2n,則其前n項(xiàng)和Tn=
(n2-2n+3)•2n+1-6
(n2-2n+3)•2n+1-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的通項(xiàng)公式為an=2n-1
(1)求證:{an}是等差數(shù)列;
(2)求{an}的前n項(xiàng)和Sn
(3)設(shè)數(shù)學(xué)公式,試求數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式

查看答案和解析>>


同步練習(xí)冊(cè)答案