欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)y=(
1
3
)x
,那么( 。
A.函數(shù)的圖象過點(diǎn)(0,1),函數(shù)在(-∞,+∞)上是增函數(shù)
B.函數(shù)的圖象過點(diǎn)(1,0),函數(shù)在(-∞,+∞)上是增函數(shù)
C.函數(shù)的圖象過點(diǎn)(1,0),函數(shù)在(-∞,+∞)上是減函數(shù)
D.函數(shù)的圖象過點(diǎn)(0,1),函數(shù)在(-∞,+∞)上是減函數(shù)
D
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=x+數(shù)學(xué)公式有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,數(shù)學(xué)公式]上是減函數(shù),在[數(shù)學(xué)公式,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+數(shù)學(xué)公式(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+數(shù)學(xué)公式(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)y=x+數(shù)學(xué)公式和y=x2+數(shù)學(xué)公式(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=x+數(shù)學(xué)公式有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,數(shù)學(xué)公式]上是減函數(shù),在[數(shù)學(xué)公式,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+數(shù)學(xué)公式(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+數(shù)學(xué)公式(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)y=x+數(shù)學(xué)公式和y=x2+數(shù)學(xué)公式(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=數(shù)學(xué)公式+數(shù)學(xué)公式(n是正整數(shù))在區(qū)間[數(shù)學(xué)公式,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=x+數(shù)學(xué)公式有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)(0,數(shù)學(xué)公式]上是減函數(shù),在[數(shù)學(xué)公式,+∞)上是增函數(shù).
(1)已知f(x)=數(shù)學(xué)公式,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域.
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x),若對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:解答題

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=(x2+
1
x
)n
+(
1
x2
+x)n
(n是正整數(shù))在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省黔西南州貞豐一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,上是減函數(shù),在,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+在(0,4)上是減函數(shù),在(4,+∞)上是增函數(shù),求實(shí)常數(shù)b的值;
(2)設(shè)常數(shù)c∈1,4,求函數(shù)f(x)=x+(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年上海市六校高三(下)第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=+(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市寶山區(qū)行知中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=+(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年上海市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=+(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知函數(shù)y=f(x)在(-∞,+∞)上是增函數(shù),A (0,-2 ),B (4,2 )是其圖象上的兩個點(diǎn),那么不等式|f(x+2)|<2的解集是
(-2,2)

查看答案和解析>>


同步練習(xí)冊答案