欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

數(shù)列{an}中,a1=1,Sn表示前n項(xiàng)和,且Sn,Sn+1,2S1成等差數(shù)列,通過(guò)計(jì)算S1,S2,S3,猜想當(dāng)n≥1時(shí),Sn=( 。
A.
2n+1
2n-1
B.
2n-1
2n-1
C.
n(n+1)
2n
D.1-
1
2n-1
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,Sn表示前n項(xiàng)和,且Sn,Sn+1,2S1成等差數(shù)列,通過(guò)計(jì)算S1,S2,S3,猜想當(dāng)n≥1時(shí),Sn=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列{an}中,a1=1,Sn表示前n項(xiàng)和,且Sn,Sn+1,2S1成等差數(shù)列,通過(guò)計(jì)算S1,S2,S3,猜想當(dāng)n≥1時(shí),Sn=( 。
A.
2n+1
2n-1
B.
2n-1
2n-1
C.
n(n+1)
2n
D.1-
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省臨沂市臨沭縣高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

數(shù)列{an}中,a1=1,Sn表示前n項(xiàng)和,且Sn,Sn+1,2S1成等差數(shù)列,通過(guò)計(jì)算S1,S2,S3,猜想當(dāng)n≥1時(shí),Sn=( )
A.
B.
C.
D.1-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

數(shù)列{an}中,a1=1,Sn表示前n項(xiàng)和,且Sn,Sn+1,2S1成等差數(shù)列,通過(guò)計(jì)算S1,S2,S3,猜想當(dāng)n≥1時(shí),Sn=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    1-數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,且Sn,Sn+1,2S1成等差數(shù)列(Sn表示數(shù)列{an}的前n項(xiàng)和),則S2,S3,S4分別為
3
2
,
7
4
,
15
8
3
2
,
7
4
,
15
8
,由此猜想出Sn=
2n-1
2n-1
2n-1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列{an}中,a1=1,且Sn,Sn+1,2S1成等差數(shù)列(Sn表示數(shù)列{an}的前n項(xiàng)和),則S2,S3,S4分別為_(kāi)_____,由此猜想出Sn=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年高考數(shù)學(xué)壓軸小題訓(xùn)練:求數(shù)列中的項(xiàng)(解析版) 題型:填空題

數(shù)列{an}中,a1=1,且Sn,Sn+1,2S1成等差數(shù)列(Sn表示數(shù)列{an}的前n項(xiàng)和),則S2,S3,S4分別為    ,由此猜想出Sn=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,a2=
2
,Sn是數(shù)列{an}的前n項(xiàng)和.當(dāng)n≥2且n∈N*時(shí),Sn+1(Sn+1-2Sn)+(2Sn-Sn-1)Sn-1=1,令bn=
a
4
n
(
1
a
4
1
+
1
a
4
2
+
1
a
4
3
+…+
1
a
4
n-1
)

(1)求數(shù)列{an}的通項(xiàng)公式;試用n和bn表示bn+1;
(2)若b1=1,n∈N*,證明:(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)>
29
9
-
2(n+1)
n(n+2)

(3)當(dāng)n∈N*時(shí),證明
a
2
1
C
0
n
2
+
a
2
2
C
1
n
22
+
a
2
3
C
2
n
23
+…+
a
2
i+1
C
1
n
2i+1
+…+
a
2
n+1
C
n
n
2n+1
3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,a2=
2
,Sn是數(shù)列{an}的前n項(xiàng)和.當(dāng)n≥2且n∈N*時(shí),Sn+1(Sn+1-2Sn)+(2Sn-Sn-1)Sn-1=1,令bn=
a
4
n
(
1
a
4
1
+
1
a
4
2
+
1
a
4
3
+…+
1
a
4
n-1
)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試用n和bn表示bn+1;
(3)若b1=1,n∈N*,證明:(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)>
29
9
-
2(n+1)
n(n+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:填空題

在數(shù)列{an}中,a1=1,且Sn,Sn+1,2S1成等差數(shù)列(Sn表示數(shù)列{an}的前n項(xiàng)和),則S2,S3,S4分別為(    ),由此猜想Sn=(    )。

查看答案和解析>>


同步練習(xí)冊(cè)答案