定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式: ①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b); ③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a), 其中成立的是( ) |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
13、定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù),偶函數(shù)g(x)在區(qū)間[0,+∞)上的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).
其中正確不等式的序號是
①③
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
6、定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a),
其中成立的是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù),偶函數(shù)g(x)在區(qū)間[0,+∞)上的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).
其中正確不等式的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a),
其中成立的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年吉林省吉林市高一(上)期中數(shù)學(xué)試卷(解析版)
題型:選擇題
定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a),
其中成立的是( )
A.①與④
B.②與③
C.①與③
D.②與④
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年廣東省汕頭市潮陽一中高一(上)期中數(shù)學(xué)試卷(解析版)
題型:選擇題
定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a),
其中成立的是( )
A.①與④
B.②與③
C.①與③
D.②與④
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年安徽省巢湖市無為中學(xué)高三(上)第二次檢測數(shù)學(xué)試卷(理科)(解析版)
題型:選擇題
定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a),
其中成立的是( )
A.①與④
B.②與③
C.①與③
D.②與④
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年吉林省吉林市高一(上)期中數(shù)學(xué)試卷(解析版)
題型:選擇題
定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a),
其中成立的是( )
A.①與④
B.②與③
C.①與③
D.②與④
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年江蘇省泰州市泰興三中高一(上)期中數(shù)學(xué)試卷(解析版)
題型:填空題
定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù),偶函數(shù)g(x)在區(qū)間[0,+∞)上的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).
其中正確不等式的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:《第1章 集合與函數(shù)概念》2011年單元測試卷(清水一中)(解析版)
題型:選擇題
定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a),
其中成立的是( )
A.①與④
B.②與③
C.①與③
D.②與④
查看答案和解析>>