若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則<0的解集為( 。| A.(-2,0)∪(0,2) | B.(-∞,-2)∪(0,2) | C.(-∞,-2)∪(2,+∞) | D.(-2,0)∪(2,+∞) |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則
<0的解集為( 。
| A、(-2,0)∪(0,2) |
| B、(-∞,-2)∪(0,2) |
| C、(-∞,-2)∪(2,+∞) |
| D、(-2,0)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),有f(-1)=0,則f(x)<0的解集是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)上是增函數(shù),又f(2)=0,則xf(x)<0( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:日照一模
題型:單選題
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則
<0的解集為( 。
| A.(-2,0)∪(0,2) | B.(-∞,-2)∪(0,2) | C.(-∞,-2)∪(2,+∞) | D.(-2,0)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2010-2011學(xué)年浙江省杭州二中高一(上)期中數(shù)學(xué)試卷(解析版)
題型:選擇題
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則

<0的解集為( )
A.(-2,0)∪(0,2)
B.(-∞,-2)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-2,0)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年浙江省臺(tái)州市六校高一(上)10月月考數(shù)學(xué)試卷(解析版)
題型:選擇題
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則

<0的解集為( )
A.(-2,0)∪(0,2)
B.(-∞,-2)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-2,0)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年福建省福州市羅源一中高一(上)第一次月考數(shù)學(xué)試卷(解析版)
題型:選擇題
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則

<0的解集為( )
A.(-2,0)∪(0,2)
B.(-∞,-2)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-2,0)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年黑龍江省農(nóng)墾總局牡丹江管理局高中高一(上)期末數(shù)學(xué)試卷(解析版)
題型:選擇題
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則

<0的解集為( )
A.(-2,0)∪(0,2)
B.(-∞,-2)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-2,0)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2009年山東省日照市高考數(shù)學(xué)一模試卷(文科)(解析版)
題型:選擇題
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則

<0的解集為( )
A.(-2,0)∪(0,2)
B.(-∞,-2)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-2,0)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011年高考數(shù)學(xué)復(fù)習(xí):2.4 函數(shù)的奇偶數(shù)(1)(解析版)
題型:選擇題
若函數(shù)f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則

<0的解集為( )
A.(-2,0)∪(0,2)
B.(-∞,-2)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-2,0)∪(2,+∞)
查看答案和解析>>