欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

對集合A,如果存在x0使得對任意正數(shù)a,都存在x∈A,使0<|x-x0|<a,則稱x0為集合A的“聚點”,給出下列四個集合:
{
n
n+1
|n∈Z,n≥0}

②{x∈R|x≠0};
{
1
n
|n∈Z,n≠0}
;
④Z.
其中以0為“聚點”的集合是( 。
A.②③B.①②C.①③D.②④
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對集合A,如果存在x0使得對任意正數(shù)a,都存在x∈A,使0<|x-x0|<a,則稱x0為集合A的“聚點”,給出下列四個集合:
{
n
n+1
|n∈Z,n≥0}
;
②{x∈R|x≠0};
{
1
n
|n∈Z,n≠0}

④Z.
其中以0為“聚點”的集合是( 。
A.②③B.①②C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湛江二模)對集合A,如果存在x0使得對任意正數(shù)a,都存在x∈A,使0<|x-x0|<a,則稱x0為集合A的“聚點”,給出下列四個集合:
{
n
n+1
|n∈Z,n≥0}
;
②{x∈R|x≠0};
{
1
n
|n∈Z,n≠0}

④Z.
其中以0為“聚點”的集合是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省高考真題 題型:證明題

A是由定義在[2,4]上且滿足如下條件的函數(shù)φ(x)組成的集合:
①對任意x∈[1,2],都有φ(2x)∈(1,2) ;
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|,
(Ⅰ)設(shè),證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設(shè)φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20.

A是由定義在[2,4]上且滿足如下條件的函數(shù)(x)組成的集合:①對任意的都有(2x);②存在常數(shù)L(0<L<1),使得對任意的x1,x2[1,2],都有|(2x1)- (2 x2)|.

(Ⅰ)設(shè)(x)=證明:(x)A:

(Ⅱ)設(shè)(x),如果存在x0(1,2),使得x0=(2x0),那么這樣的x0是唯一的:

(Ⅲ)設(shè)任取x1(1,2),令xn+1=(2xn),n=1,2……證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式Equation.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

A是定義在[2,4]上且滿足如下兩個條件的函數(shù)Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設(shè)數(shù)學(xué)公式,證明:Φ(x)∈A;
(2)設(shè)Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設(shè)Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式數(shù)學(xué)公式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:延慶縣一模 題型:解答題

A是由定義在[2,4]上且滿足如下條件的函數(shù)φ(x)組成的集合:
(1)對任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<0),使得對任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[2,4],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設(shè)φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•延慶縣一模)A是由定義在[2,4]上且滿足如下條件的函數(shù)φ(x)組成的集合:
(1)對任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<0),使得對任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[2,4],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設(shè)φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A是定義在[2,4]上且滿足如下條件的函數(shù)φ(x)組成的集合:①對任意的x∈[1,2],都有φ(2x)∈(1,2);②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.

(Ⅰ)設(shè)φ(x)=,x∈[2,4],證明:φ(x)∈A.

(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.

(Ⅲ)設(shè)φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式|xk+p-xk|≤|x2-x1|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A是定義在[2,4]上且滿足如下兩個條件的函數(shù)Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設(shè)Φ(x)=
[
3]1+x,x∈[2,4]
,證明:Φ(x)∈A;
(2)設(shè)Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設(shè)Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇模擬 題型:解答題

A是定義在[2,4]上且滿足如下兩個條件的函數(shù)Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設(shè)Φ(x)=
[
3]1+x,x∈[2,4]
,證明:Φ(x)∈A;
(2)設(shè)Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設(shè)Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>


同步練習(xí)冊答案