| 已知函數(shù)f(x)=loga(a>0,a≠1),對定義域內(nèi)的任意x都有f(2-x)+f(2+x)=0成立.則實數(shù)m的值為( 。 |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=loga(a>0,a≠1),
對定義域內(nèi)的任意x都有f(2-x)+f(2+x)=0成立.
(1)求實數(shù)m的值;
(2)當(dāng)x∈(b,a)時,f(x)的取值范圍恰為(1,+∞),求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
f(x)=loga(a>0,a≠1),
對定義域內(nèi)的任意x都有f(2-x)+f(2+x)=0成立.
(1)求實數(shù)m的值;
(2)當(dāng)x∈(b,a)時,f(x)的取值范圍恰為(1,+∞),求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:廣州模擬
題型:單選題
已知函數(shù)
f(x)=loga(a>0,a≠1),對定義域內(nèi)的任意x都有f(2-x)+f(2+x)=0成立.則實數(shù)m的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2006•廣州模擬)已知函數(shù)
f(x)=loga(a>0,a≠1),對定義域內(nèi)的任意x都有f(2-x)+f(2+x)=0成立.則實數(shù)m的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=loga(a>0,a≠1,m≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當(dāng)x∈(r,a-2)時,函數(shù)f(x)的值域是(1,+∞),求實數(shù)r與a的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=loga(a>0,a≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當(dāng)x∈(n,a-2)時,函數(shù)f(x)的值域是(1,+∞),求實數(shù)a與n的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=loga(a>0,a≠1,m≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)當(dāng)x∈(n,a-2)時,函數(shù)f(x)的值域是(1,+∞),求實數(shù)a與n的值;
(3)令函數(shù)g(x)=-ax
2+8(x-1)a
f(x)-5,試問是否存在實數(shù)a,使得對任意的實數(shù)x∈(1,2],-5≤g(x)≤5恒成立?若存在,求出實數(shù)a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=loga(a>0,a≠1)是奇函數(shù).
(1)求m的值;
(2)求f(x)的反函數(shù)f
-1(x);
(3)討論f(x)的單調(diào)性,并用定義證明;
(4)當(dāng)f(x)定義域區(qū)間為(1,a-2)時,f(x)的值域為(1,+∞),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
f(x)=loga(a>0,a≠1,m≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當(dāng)x∈(r,a-2)時,函數(shù)f(x)的值域是(1,+∞),求實數(shù)r與a的值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
f(x)=loga(a>0,a≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當(dāng)x∈(n,a-2)時,函數(shù)f(x)的值域是(1,+∞),求實數(shù)a與n的值.
查看答案和解析>>