欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知F(x)=mf(x)+ng(x)+x+2對任意x∈(0,+∞)都有F(x)≤F(2)=8,且f(x)與g(x)都是奇函數(shù),則在(-∞,0)上F(x)有( 。
A.最大值8B.最小值-8C.最大值-10D.最小值-4
相關習題

科目:高中數(shù)學 來源: 題型:

已知F(x)=mf(x)+ng(x)+x+2對任意x∈(0,+∞)都有F(x)≤F(2)=8,且f(x)與g(x)都是奇函數(shù),則在(-∞,0)上F(x)有( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F(x)=mf(x)+ng(x)+x+2對任意x∈(0,+∞)都有F(x)≤F(2)=8,且f(x)與g(x)都是奇函數(shù),則在(-∞,0)上F(x)有( 。
A.最大值8B.最小值-8C.最大值-10D.最小值-4

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省龍巖一中高一(上)期中數(shù)學試卷(解析版) 題型:選擇題

已知F(x)=mf(x)+ng(x)+x+2對任意x∈(0,+∞)都有F(x)≤F(2)=8,且f(x)與g(x)都是奇函數(shù),則在(-∞,0)上F(x)有( )
A.最大值8
B.最小值-8
C.最大值-10
D.最小值-4

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省大慶市鐵人中學高三(上)第二次月考數(shù)學試卷(解析版) 題型:選擇題

已知F(x)=mf(x)+ng(x)+x+2對任意x∈(0,+∞)都有F(x)≤F(2)=8,且f(x)與g(x)都是奇函數(shù),則在(-∞,0)上F(x)有( )
A.最大值8
B.最小值-8
C.最大值-10
D.最小值-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知F(x)=mf(x)+ng(x)+x+2對任意x∈(0,+∞)都有F(x)≤F(2)=8,且f(x)與g(x)都是奇函數(shù),則在(-∞,0)上F(x)有


  1. A.
    最大值8
  2. B.
    最小值-8
  3. C.
    最大值-10
  4. D.
    最小值-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知f(x)=4x+1,g(x)=4-x.若偶函數(shù)h(x)滿足h(x)=mf(x)+ng(x)(其中m,n為常數(shù)),且最小值為1,則m+n=________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧德模擬)已知f(x)=4x+1,g(x)=4-x.若偶函數(shù)h(x)滿足h(x)=mf(x)+ng(x)(其中m,n為常數(shù)),且最小值為1,則m+n=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m,n使得h(x)=mf(x)+ng(x),那么稱h(x)為f(x)、g(x)在R上生成的一個函數(shù),設f(x)=x2+ax,g(x)=x+b,(a,b∈R),r(x)=2x2+3x-1,h(x)為f(x)、g(x)在R上生成的一個二次函數(shù)。

(1)設a=1,b=2,若h(x)為偶函數(shù),求h();

(2)設b>0,若h(x)同時也是g(x)、r(x)在R上生成的一個函數(shù),求a+b的最小值;

(3)試判斷h(x)能否為任意一個二次函數(shù),并證明你的結論。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x),g(x)都是定義在R上的函數(shù),若存在正實數(shù)m,n使得h(x)=mf(x)+ng(x)恒成立,則稱h(x)為f(x),g(x)在R上的生成函數(shù).若數(shù)學公式
(1)判斷函數(shù)y=sinkx,(k∈R)是否為f(x),g(x)在R上的生成函數(shù),請說明理由.
(2)記G(x)為f(x),g(x)在R上的生成函數(shù),若數(shù)學公式,且G(x)的最大值為數(shù)學公式,求G(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年河北省衡水中學高一(上)三調(diào)數(shù)學試卷(解析版) 題型:解答題

已知f(x),g(x)都是定義在R上的函數(shù),若存在正實數(shù)m,n使得h(x)=mf(x)+ng(x)恒成立,則稱h(x)為f(x),g(x)在R上的生成函數(shù).若
(1)判斷函數(shù)y=sinkx,(k∈R)是否為f(x),g(x)在R上的生成函數(shù),請說明理由.
(2)記G(x)為f(x),g(x)在R上的生成函數(shù),若,且G(x)的最大值為,求G(x)的解析式.

查看答案和解析>>


同步練習冊答案