| 已知函數(shù)f(x)=在(-3,-2)上是增函數(shù),則二次函數(shù)y=2kx2-4x+k2的圖象可以為( 。 |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=在(-3,-2)上是增函數(shù),則二次函數(shù)y=2kx
2-4x+k
2的圖象可以為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
f(x)=在(-3,-2)上是增函數(shù),則二次函數(shù)y=2kx
2-4x+k
2的圖象可以為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=(1)若對于任意的x∈R,f(x)>0恒成立,求實(shí)數(shù)k的取值范圍;
(2)若f(x)的最小值為-3,求實(shí)數(shù)k的取值范圍;
(3)若對于任意的x
1、x
2、x
3,均存在以f(x
1)、f(x
2)、f(x
3)為三邊長的三角形,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
f(x)=(1)若對于任意的x∈R,f(x)>0恒成立,求實(shí)數(shù)k的取值范圍;
(2)若f(x)的最小值為-3,求實(shí)數(shù)k的取值范圍;
(3)若對于任意的x
1、x
2、x
3,均存在以f(x
1)、f(x
2)、f(x
3)為三邊長的三角形,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=ln(x+)+,g(x)=lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果關(guān)于x的方程
g(x)=x+m有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(3)是否存在正數(shù)k,使得關(guān)于x的方程f(x)=kg(x)有兩個(gè)不相等的實(shí)根?如果存在,求的k取值范圍,如果不存在,說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x-k2+k+2(k∈N),滿足f(2)<f(3).
(1)求k的值并求出相應(yīng)的f(x)的解析式;
(2)對于(1)中的函數(shù)f(x),試判斷是否存在m,使得函數(shù)g(x)=f(x)-2x+m在[0,2]上的值域?yàn)閇2,3],若存在,請求出m,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x-ln(x+a)在x=1處取得極值.
(1)求實(shí)數(shù)a的值;
(2)若關(guān)于x的方程f(x)+2x=x
2+b在[
,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(3)證明:
| n |
 |
| k=2 |
>(n∈N+,n≥2)(參考數(shù)據(jù):ln2≈0.6931)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)
f(x)=.
(1)試確定f(x)的奇偶性;
(2)求證:函數(shù)f(x)在R上是減函數(shù);
(3)若對任意的t∈R,不等式f(t
2-2t)+f(2t
2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=log
2,g(x)=log
2(x-1)
(1)判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(2)記函數(shù)h(x)=g(2
x+2)+kx,問:是否存在實(shí)數(shù)k使得函數(shù)h(x)為偶函數(shù)?若存在,請求出k的值;若不存在,請說明理由;
(3)記函數(shù)F(x)=f(x)+g(x)+log
2(p-x),其中p>1試求F(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x3-ax2+x+b在(1,f(1))處的切線方程為y=2x+1.
(1)求a,b的值;
(2)設(shè)函數(shù)g(x)=-(1+k)x2+x+2,若在x∈(0,3)內(nèi),函數(shù)f(x)的圖象總在g(x)的下方,則求k的取值范圍.
查看答案和解析>>