如圖,⊙O與⊙O′交于 A,B,⊙O的弦AC與⊙O′相切于點(diǎn)A,⊙O′的弦AD與⊙O相切于A點(diǎn),則下列結(jié)論中正確的是( )
![]() |
科目:高中數(shù)學(xué) 來源: 題型:
科目:高中數(shù)學(xué) 來源:不詳 題型:單選題
| A.∠1>∠2 | B.∠1=∠2 | C.∠1<∠2 | D.無法確定 |
科目:高中數(shù)學(xué) 來源:不詳 題型:單選題
| A.∠1>∠2 | B.∠1=∠2 | C.∠1<∠2 | D.無法確定 |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省鄭州市新密二高高二(下)5月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題
科目:高中數(shù)學(xué) 來源: 題型:單選題
科目:高中數(shù)學(xué) 來源:2013屆吉林長春市高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知,如圖,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長線交⊙O于點(diǎn)F, BP的延長線交AC于點(diǎn)E.
![]()
⑴求證:FA∥BE;
⑵求證:![]()
【解析】本試題主要是考查了平面幾何中圓與三角形的綜合運(yùn)用。
(1)要證明線線平行,主要是通過證明線線平行的判定定理得到
(2)利用三角形△APC∽△FAC相似,來得到線段成比列的結(jié)論。
證明:(1)在⊙O中,∵直徑AB與FP交于點(diǎn)O ∴OA=OF
∴∠OAF=∠F ∵∠B=∠F ∴∠OAF=∠B ∴FA∥BE
(2)∵AC為⊙O的切線,PA是弦 ∴∠PAC=∠F
∵∠C=∠C ∴△APC∽△FAC ∴![]()
∴
∵AB=AC
∴![]()
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省漢中市城固一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 2 |
| ||
| 2 |
| 3 |
| 3 |
科目:高中數(shù)學(xué) 來源:2011年陜西省渭南市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題
科目:高中數(shù)學(xué) 來源: 題型:填空題
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com