“函數(shù)f(x)(x∈R)存在反函數(shù)”是“函數(shù)f(x)在R上為增函數(shù)”的( )| A.充分而不必要條件 | B.必要而不充分條件 | | C.充分必要條件 | D.既不充分也不必要條件 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn),若點(diǎn)B的坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求實(shí)數(shù)C的值;
(2)在函數(shù)f(x)的圖象上是否存在點(diǎn)M(x0,y0),使f(x)在點(diǎn)M處的切線斜率為3b?若存在,求出點(diǎn)M的坐標(biāo);不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
1、“函數(shù)f(x)(x∈R)存在反函數(shù)”是“函數(shù)f(x)在R上為增函數(shù)”的( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
“函數(shù)
f(
x)(
x∈R)存在反函數(shù)”是“函數(shù)
f(
x)在R上為增函數(shù)”的
(A)充分而不必要條件 (B)必要而不充分條件
(C)充分必要條件 (D)即不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年山東省菏澤市鄄城實(shí)驗(yàn)中學(xué)高三(下)雙周適應(yīng)性訓(xùn)練數(shù)學(xué)試卷2(文科)(解析版)
題型:解答題
已知f(x)=ax
3+bx
2+cx+d是定義在R上的函數(shù),其A,B,C三點(diǎn),若點(diǎn)B的坐標(biāo)為(2,0),且 f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求

的取值范圍;
(2)在函數(shù)f(x)的圖象上是否存在一點(diǎn)M(x
,y
),使得 f(x)在點(diǎn)M的切線斜率為3b?求出點(diǎn)M的坐標(biāo);若不存在,說明理由;
(3)求|AC|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012年高三二輪復(fù)習(xí)綜合驗(yàn)收數(shù)學(xué)試卷2(文科)(新課標(biāo))(解析版)
題型:解答題
已知f(x)=ax
3+bx
2+cx+d是定義在R上的函數(shù),其A,B,C三點(diǎn),若點(diǎn)B的坐標(biāo)為(2,0),且 f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求

的取值范圍;
(2)在函數(shù)f(x)的圖象上是否存在一點(diǎn)M(x
,y
),使得 f(x)在點(diǎn)M的切線斜率為3b?求出點(diǎn)M的坐標(biāo);若不存在,說明理由;
(3)求|AC|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:北京
題型:單選題
“函數(shù)f(x)(x∈R)存在反函數(shù)”是“函數(shù)f(x)在R上為增函數(shù)”的( 。
| A.充分而不必要條件 | B.必要而不充分條件 |
| C.充分必要條件 | D.既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn),若點(diǎn)B的坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求實(shí)數(shù)C的值;
(2)在函數(shù)f(x)的圖象上是否存在點(diǎn)M(x0,y0),使f(x)在點(diǎn)M處的切線斜率為3b?若存在,求出點(diǎn)M的坐標(biāo);不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2009-2010學(xué)年湖南省岳陽一中高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn),若點(diǎn)B的坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求實(shí)數(shù)C的值;
(2)在函數(shù)f(x)的圖象上是否存在點(diǎn)M(x,y),使f(x)在點(diǎn)M處的切線斜率為3b?若存在,求出點(diǎn)M的坐標(biāo);不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2009-2010學(xué)年山東省濟(jì)寧一中高三(上)第二次反饋練習(xí)數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn),若點(diǎn)B的坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求實(shí)數(shù)C的值;
(2)在函數(shù)f(x)的圖象上是否存在點(diǎn)M(x,y),使f(x)在點(diǎn)M處的切線斜率為3b?若存在,求出點(diǎn)M的坐標(biāo);不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2010-2011學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn),若點(diǎn)B的坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求實(shí)數(shù)C的值;
(2)在函數(shù)f(x)的圖象上是否存在點(diǎn)M(x,y),使f(x)在點(diǎn)M處的切線斜率為3b?若存在,求出點(diǎn)M的坐標(biāo);不存在說明理由.
查看答案和解析>>