欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

三角形是( 。
A.連接任意三點(diǎn)組成的圖形
B.由不在同一條直線上的三條線段首尾順次相接所成的圖形
C.由三條線段組成的圖形
D.以上說法均不對
B
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

三角形是( 。
A.連接任意三點(diǎn)組成的圖形
B.由不在同一條直線上的三條線段首尾順次相接所成的圖形
C.由三條線段組成的圖形
D.以上說法均不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

填空:
(1)在圓周上有7個(gè)點(diǎn)A,B,C,D,E,F(xiàn)和G,連接每兩個(gè)點(diǎn)的線段共可作出______條.
(2)已知5條線段的長分別是3,5,7,9,11,若每次以其中3條線段為邊組成三角形,則最多可構(gòu)成互不全等的三角形______個(gè).
(3)三角形的三邊長都是正整數(shù),其中有一邊長為4,但它不是最短邊,這樣不同的三角形共有______個(gè).
(4)以正七邊形的7個(gè)頂點(diǎn)中的任意3個(gè)為頂點(diǎn)的三角形中,銳角三角形的個(gè)數(shù)是______.
(5)平面上10條直線最多能把平面分成______個(gè)部分.
(6)平面上10個(gè)圓最多能把平面分成______個(gè)區(qū)域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

填空:
(1)在圓周上有7個(gè)點(diǎn)A,B,C,D,E,F(xiàn)和G,連接每兩個(gè)點(diǎn)的線段共可作出______條.
(2)已知5條線段的長分別是3,5,7,9,11,若每次以其中3條線段為邊組成三角形,則最多可構(gòu)成互不全等的三角形______個(gè).
(3)三角形的三邊長都是正整數(shù),其中有一邊長為4,但它不是最短邊,這樣不同的三角形共有______個(gè).
(4)以正七邊形的7個(gè)頂點(diǎn)中的任意3個(gè)為頂點(diǎn)的三角形中,銳角三角形的個(gè)數(shù)是______.
(5)平面上10條直線最多能把平面分成______個(gè)部分.
(6)平面上10個(gè)圓最多能把平面分成______個(gè)區(qū)域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義:如果一個(gè)圖形經(jīng)過分割,能分為4個(gè)與自身相似的圖形,我們稱它為“能四階自相似分割圖形”.如圖1,任意△ABC取各邊的中點(diǎn)D、E、F,連接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF顯然都與△ABC相似,則任意△ABC是“能四階自相似分割圖形”.
精英家教網(wǎng)
(1)小明發(fā)現(xiàn):任意矩形ABCD(如圖2)也是“能四階自相似分割圖形”.請你利用尺規(guī)作圖作出分割線.(保留作圖痕跡,不要求寫作法)
(2)同組的小華思考后提出:能不能設(shè)計(jì)一種方案,將任意△ABC分割成四個(gè)與△ABC相似的小三角形,且其中至少有兩個(gè)小三角形的相似比不為1?為了研究方便,小華取AB=6,AC=4,BC=5,(如圖3)并成功地設(shè)計(jì)出了分法.請你完成小華的分法,并簡單地說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

定義:如果一個(gè)圖形經(jīng)過分割,能分為4個(gè)與自身相似的圖形,我們稱它為“能四階自相似分割圖形”.如圖1,任意△ABC取各邊的中點(diǎn)D、E、F,連接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF顯然都與△ABC相似,則任意△ABC是“能四階自相似分割圖形”.
作業(yè)寶
(1)小明發(fā)現(xiàn):任意矩形ABCD(如圖2)也是“能四階自相似分割圖形”.請你利用尺規(guī)作圖作出分割線.(保留作圖痕跡,不要求寫作法)
(2)同組的小華思考后提出:能不能設(shè)計(jì)一種方案,將任意△ABC分割成四個(gè)與△ABC相似的小三角形,且其中至少有兩個(gè)小三角形的相似比不為1?為了研究方便,小華取AB=6,AC=4,BC=5,(如圖3)并成功地設(shè)計(jì)出了分法.請你完成小華的分法,并簡單地說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省無錫市前洲中學(xué)九年級(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

定義:如果一個(gè)圖形經(jīng)過分割,能分為4個(gè)與自身相似的圖形,我們稱它為“能四階自相似分割圖形”.如圖1,任意△ABC取各邊的中點(diǎn)D、E、F,連接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF顯然都與△ABC相似,則任意△ABC是“能四階自相似分割圖形”.

(1)小明發(fā)現(xiàn):任意矩形ABCD(如圖2)也是“能四階自相似分割圖形”.請你利用尺規(guī)作圖作出分割線.(保留作圖痕跡,不要求寫作法)
(2)同組的小華思考后提出:能不能設(shè)計(jì)一種方案,將任意△ABC分割成四個(gè)與△ABC相似的小三角形,且其中至少有兩個(gè)小三角形的相似比不為1?為了研究方便,小華取AB=6,AC=4,BC=5,(如圖3)并成功地設(shè)計(jì)出了分法.請你完成小華的分法,并簡單地說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

某數(shù)學(xué)活動(dòng)小組在作三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過程:
(1)操作發(fā)現(xiàn):在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是______(填序號即可)
①AF=AG=AB;②MD=ME;③整個(gè)圖形是軸對稱圖形;④MD⊥ME.
(2)數(shù)學(xué)思考:在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD和ME具有怎樣的數(shù)量關(guān)系?請給出證明過程;
(3)類比探究:
(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MED的形狀.答:______.
(ii)在三邊互不相等的△ABC中(見備用圖),仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點(diǎn),連接MD和ME,要使(2)中的結(jié)論此時(shí)仍然成立,你認(rèn)為需增加一個(gè)什么樣的條件?(限用題中字母表示)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)某數(shù)學(xué)活動(dòng)小組在作三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過程:
(1)操作發(fā)現(xiàn):在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是
①②③④
①②③④
(填序號即可)
①AF=AG=
12
AB;②MD=ME;③整個(gè)圖形是軸對稱圖形;④MD⊥ME.
(2)數(shù)學(xué)思考:在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD和ME具有怎樣的數(shù)量關(guān)系?請給出證明過程;
(3)類比探究:
(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MED的形狀.答:
等腰直角三角形
等腰直角三角形

(ii)在三邊互不相等的△ABC中(見備用圖),仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點(diǎn),連接MD和ME,要使(2)中的結(jié)論此時(shí)仍然成立,你認(rèn)為需增加一個(gè)什么樣的條件?(限用題中字母表示)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣一模)七年級我們曾學(xué)過“兩點(diǎn)之間線段最短”的知識(shí),常可利用它來解決兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習(xí)題:
如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點(diǎn),使得PA+PB最。
我們只要作點(diǎn)B關(guān)于l的對稱點(diǎn)B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當(dāng)于求AP+PB′最小,顯然當(dāng)A、P、B′在一條直線上時(shí)AP+PB′最小,因此連接AB',與直線l的交點(diǎn)就是要求的點(diǎn)P.
有很多問題都可用類似的方法去思考解決.
探究:
(1)如圖3,正方形ABCD的邊長為2,E為BC的中點(diǎn),P是BD上一動(dòng)點(diǎn).連接EP,CP,則EP+CP的最小值是
5
5
;
運(yùn)用:
(2)如圖4,平面直角坐標(biāo)系中有三點(diǎn)A(6,4)、B(4,6)、C(0,2),在x軸上找一點(diǎn)D,使得四邊形ABCD的周長最小,則點(diǎn)D的坐標(biāo)應(yīng)該是
(2,0)
(2,0)


操作:
(3)如圖5,A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各求作一點(diǎn)B,C,組成△ABC,使△ABC周長最。ú粚懽鞣ǎA糇鲌D痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

七年級我們曾學(xué)過“兩點(diǎn)之間線段最短”的知識(shí),?衫盟鼇斫鉀Q兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習(xí)題:

如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點(diǎn),使得PA+PB最。

圖2

 

圖1

 

我們只要作點(diǎn)B關(guān)于l的對稱點(diǎn)B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當(dāng)于求AP+PB′最小,顯然當(dāng)A、P、B′在一條直線上時(shí)AP+PB′最小,因此連接AB',與直線l的交點(diǎn),就是要求的點(diǎn)P.

有很多問題都可用類似的方法去思考解決.

探究:

1.如圖3,正方形ABCD的邊長為2,E為BC的中點(diǎn), P是BD上一動(dòng)點(diǎn).連結(jié)EP,CP,則EP+CP的最小值是________;

運(yùn)用:

2.如圖4,平面直角坐標(biāo)系中有三點(diǎn)A(6,4)、B(4,6)、C(0,2),在x軸上找一點(diǎn)D,使得四邊形ABCD的周長最小,則點(diǎn)D的坐標(biāo)應(yīng)該是        ;

操作:

3.如圖5,A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各求作一點(diǎn)B,C,組成△ABC,使△ABC周長最小.(不寫作法,保留作圖痕跡)

                  

 

查看答案和解析>>


同步練習(xí)冊答案