科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(河北卷)數(shù)學(帶解析) 題型:解答題
一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關系是 ,BQ的長是 dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=
,tan37°=
)![]()
拓展 在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC = x,BQ = y.分別就圖3和圖4求y與x的函數(shù)關系式,并寫出相應的α的范圍.![]()
延伸 在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.![]()
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(河北卷)數(shù)學(解析版) 題型:解答題
一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關系是 ,BQ的長是 dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=
,tan37°=
)
![]()
拓展 在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC = x,BQ = y.分別就圖3和圖4求y與x的函數(shù)關系式,并寫出相應的α的范圍.
![]()
延伸 在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.
![]()
科目:初中數(shù)學 來源:不詳 題型:解答題
科目:初中數(shù)學 來源:2013年河北市高級中等學校招生考試數(shù)學 題型:044
一透明的敞口正方體容器ABCD-
裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖①所示).
探究如圖①,液面剛好過棱CD,并與棱B
交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖②所示.解決問題:
(1)CQ與BE的位置關系是________,BQ的長是________dm;
(2)求液體的體積;(參考算法:直棱柱體積V液=底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=
,tan37°=
)
拓展在圖①的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖③或圖④是其正面示意圖.若液面與棱
C或CB交于點P,設PC=x,BQ=y.分別就圖③和圖④求y與x的函數(shù)關系式,并寫出相應的α的范圍.
[溫馨提示:下頁還有題!]
延伸在圖④的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖⑤,隔板高NM=1 dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α=60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.
科目:初中數(shù)學 來源: 題型:
一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些 液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE = α,如圖17-1所示).
探究 如圖17-1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖17-2所示.解決問題:
(1)CQ與BE的位置關系是___________,BQ的長是____________dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=
,tan37°=
)
拓展 在圖17-1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖17-3或圖17-4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC = x,BQ = y.分別就圖17-3和圖17-4求y與x的函數(shù)關系式,并寫出相應的α的范圍.
延伸 在圖17-4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖17-5,隔板高NM = 1 dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.
科目:初中數(shù)學 來源: 題型:
| 3 |
| 4 |
| 3 |
| 4 |
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com