欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

下面( 。┙M數(shù)不能作為直角三角形的邊長.
A.36,15,39B.8,15,17C.9,12,15D.12,35,36
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:湖南省中考真題 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式;
(2)應(yīng)用:按規(guī)定機(jī)動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長為l求l的最大值;
II.如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q,問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐——應(yīng)用——探究的過程

(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道進(jìn)行測量,測得隧道的路面寬為10米,隧道頂部最高處距地面6.25米,并畫出了隧道截面圖,建立了如圖所示的直角坐標(biāo)系,請你求出拋物線的解析式

(2)應(yīng)用:按規(guī)定機(jī)動車輛通過隧道時,車頂部與隧道頂部在豎起方向上的高度差至少為0.5米,為了確保安全,問該隧道能否讓最寬3米,最高3.5米的兩輛車居中并列行駛(不考慮兩車之間的空隙)?

(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探究拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:

①如圖,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長為為l,求l的最大值

②如圖,過原點(diǎn)作一條直線y=x,交拋物線于M,交拋物線的對稱軸于N,P為直線OM上一動點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q,問在直線OM上是否存在點(diǎn)P,使以點(diǎn)P、N、Q為頂點(diǎn)的三角形為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐——應(yīng)用——探究的過程
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道進(jìn)行測量,測得隧道的路面寬為10米,隧道頂部最高處距地面6.25米,并畫出了隧道截面圖,建立了如圖所示的直角坐標(biāo)系,請你求出拋物線的解析式
(2)應(yīng)用:按規(guī)定機(jī)動車輛通過隧道時,車頂部與隧道頂部在豎起方向上的高度差至少為0.5米,為了確保安全,問該隧道能否讓最寬3米,最高3.5米的兩輛車居中并列行駛(不考慮兩車之間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探究拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
①如圖,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長為為l,求l的最大值
②如圖,過原點(diǎn)作一條直線y=x,交拋物線于M,交拋物線的對稱軸于N,P為直線OM上一動點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q,問在直線OM上是否存在點(diǎn)P,使以點(diǎn)P、N、Q為頂點(diǎn)的三角形為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖南岳陽卷)數(shù)學(xué) 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐——應(yīng)用——探究的過程

(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道進(jìn)行測量,測得隧道的路面寬為10米,隧道頂部最高處距地面6.25米,并畫出了隧道截面圖,建立了如圖所示的直角坐標(biāo)系,請你求出拋物線的解析式

(2)應(yīng)用:按規(guī)定機(jī)動車輛通過隧道時,車頂部與隧道頂部在豎起方向上的高度差至少為0.5米,為了確保安全,問該隧道能否讓最寬3米,最高3.5米的兩輛車居中并列行駛(不考慮兩車之間的空隙)?

(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探究拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:

①如圖,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長為為l,求l的最大值

②如圖,過原點(diǎn)作一條直線y=x,交拋物線于M,交拋物線的對稱軸于N,P為直線OM上一動點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q,問在直線OM上是否存在點(diǎn)P,使以點(diǎn)P、N、Q為頂點(diǎn)的三角形為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

以下面四組數(shù)為邊長作三角形,不能夠成直角三角形的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、下面( 。┙M數(shù)不能作為直角三角形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

下面(  )組數(shù)不能作為直角三角形的邊長.
A.36,15,39B.8,15,17C.9,12,15D.12,35,36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索與研究:
中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對勾股定理作理論的證明.最早對勾股定理進(jìn)行證明的,是三國時期吳國的數(shù)學(xué)家趙爽.趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合的方法,給出了勾股定理的詳細(xì)證明.在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個全等的直角三角形再加上中間的那個小正方形組成的.每個直角三角形的面積為ab/2;中間的小正方形邊長為b-a,則面積為(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×
12
ab
所以a2+b2=c2
(1)你能用下面的圖形也來驗(yàn)證一下勾股定理嗎?試一試!
(2)你自己還能設(shè)計一種方法來驗(yàn)證勾股定理嗎?
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探索與研究:
中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對勾股定理作理論的證明.最早對勾股定理進(jìn)行證明的,是三國時期吳國的數(shù)學(xué)家趙爽.趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合的方法,給出了勾股定理的詳細(xì)證明.在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個全等的直角三角形再加上中間的那個小正方形組成的.每個直角三角形的面積為ab/2;中間的小正方形邊長為b-a,則面積為(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×數(shù)學(xué)公式ab
所以a2+b2=c2
(1)你能用下面的圖形也來驗(yàn)證一下勾股定理嗎?試一試!
(2)你自己還能設(shè)計一種方法來驗(yàn)證勾股定理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊答案