科目:初中數學 來源: 題型:
科目:初中數學 來源:不詳 題型:單選題
| A.陰影部分面積大 | B.空白部分面積大 |
| C.一樣大 | D.不確定 |
科目:初中數學 來源: 題型:單選題
科目:初中數學 來源:廣東省期中題 題型:單選題
科目:初中數學 來源: 題型:
科目:初中數學 來源: 題型:
科目:初中數學 來源:2012屆山東省東阿縣姚寨中學九年級中考數學試卷4(帶解析) 題型:解答題
如圖1,拋物線y=nx2-11nx+24n (n<0) 與x軸交于B、C兩點(點B在點C的左側),拋物線上另有一點A在第一象限內,且∠BAC=90°.![]()
(1)填空:點B的坐標為(_ ),點C的坐標為(_ );
(2)連接OA,若△OAC為等腰三角形.
①求此時拋物線的解析式;
②如圖2,將△OAC沿x軸翻折后得△ODC,點M為①中所求的拋物線上點A與點C兩點之間一動點,且點M的橫坐標為m,過動點M作垂直于x軸的直線l與CD交于點N,試探究:當m為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.![]()
科目:初中數學 來源:2011-2012學年山東省九年級中考數學試卷4(解析版) 題型:解答題
如圖1,拋物線y=nx2-11nx+24n (n<0) 與x軸交于B、C兩點(點B在點C的左側),拋物線上另有一點A在第一象限內,且∠BAC=90°.
![]()
(1)填空:點B的坐標為(_ ),點C的坐標為(_ );
(2)連接OA,若△OAC為等腰三角形.
①求此時拋物線的解析式;
②如圖2,將△OAC沿x軸翻折后得△ODC,點M為①中所求的拋物線上點A與點C兩點之間一動點,且點M的橫坐標為m,過動點M作垂直于x軸的直線l與CD交于點N,試探究:當m為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.
![]()
科目:初中數學 來源:不詳 題型:解答題
科目:初中數學 來源: 題型:解答題
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com