欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如果一個三角形的一個內角大于相鄰的外角,這個三角形是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.等邊三角形
相關習題

科目:初中數(shù)學 來源: 題型:

5、如果一個三角形的一個內角大于相鄰的外角,這個三角形是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:2012年北師大版初中數(shù)學八年級下6.6關注三角形的外角練習卷(解析版) 題型:選擇題

如果一個三角形的一個內角大于相鄰的外角,這個三角形是(    )

A.銳角三角形       B.鈍角三角形        C.直角三角形        D.等邊三角形

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果一個三角形的一個內角大于相鄰的外角,這個三角形是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如果一個三角形的一個內角大于相鄰的外角,這個三角形是


  1. A.
    銳角三角形
  2. B.
    鈍角三角形
  3. C.
    直角三角形
  4. D.
    等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

如果兩個三角形不僅是相似三角形,而且每組對應點所在的直線都經(jīng)過同一個點,對應邊平行,那么這兩個三角形也是位似三角形,它們的相似比是位似比,這個點是位似中心,利用三角形的位似可以將一個三角形縮小或放大。
(1)如圖(1)所示,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形,此時△P′Q′R′與△PQR的位似比、位似中心分別為(    )   
A.2、點P    
B.、點P
C.2、點O    
D.、點O
(2)如圖(2)所示,用下面的方法可以畫△AOB的內接等邊三角形,閱讀后證明相應問題。
畫法:
①在△ABO內畫等邊△CDE,使點C在OA上,點D在OB上;  
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E'D′∥ED,交OB于點D′;  
③連接C′D′,則△C′D′E′是△AOB的內接等邊三角形,試說明△C′D′E′是等邊三角形。

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

如果兩個三角形不僅是相似三角形,而且每組對應點所在的直線都經(jīng)過同一

個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做

位似中心。利用三角形的位似可以將一個三角形縮小或放大。

1)選擇:如圖(1),點O是等邊△PQR的中心,P’Q’R’分別是OP、OQ、OR

中點,則△P’Q’R’與是△PQR是位似三角形,此時,△P’Q’R’與△PQR的位似比,位

似中心分別為                              

A. 2,點P      B. ,點P       C. 2,點O      D. ,點O

2)如圖(2),用下面的方法可以畫△AOB的內接等邊三角形,閱讀后證明相應的

問題。畫法:①在△AOB內畫等邊三角形CDE,使點COA上,點DOB上;②

連結OE并延長,交AB于點E’,過點E’E’C’//EC,交OA于點C’,作E’D’//ED

OB于點D’;③連結C’D’,則△C’D’E’是△AOB的內接三角形。

求證:△CDE是等邊三角形。

 

查看答案和解析>>

科目:初中數(shù)學 來源:中考必備’04全國中考試題集錦·數(shù)學 題型:047

如果兩個三角形不僅是相似三角形,而且每組對應點所在的直線都經(jīng)過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.

(1)選擇:如圖,點O是等邊三角形PQR的中心,分別是OP、OQ、OR的中點,則△與△PQR是位似三角形.此時,△與△PQR的位似比、位似中心分別為

[  ]

A.2、點P
B.、點P
C.2、點O
D.、點O

(2)如圖,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題.

畫法:①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;

②連結OE并延長,交AB于點,過點∥EC,交OA于點,作∥ED,交OB于點;

③連結.則△是△AOB的內接三角形.

求證:△是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們知道:如果兩個三角形不僅是相似三角形,而且每對對應點所在的直線都經(jīng)過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.
(1)選擇:如圖1,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形.此時,△P′Q′R′與△PQR的位似比、位似中心分別為
 

(A)2、點P,(B)
1
2
、點P,( C)2、點O,(D)
1
2
、點O;
(2)如圖2,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題精英家教網(wǎng)
畫法:
①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;
③連接C′D′,則△C′D′E′是△AOB的內接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們知道:如果兩個三角形不僅是相似三角形,而且每對對應點所在的直線都經(jīng)過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.
(1)選擇:如圖1,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形.此時,△P′Q′R′與△PQR的位似比、位似中心分別為______;
(A)2、點P,(B)數(shù)學公式、點P,( C)2、點O,(D)數(shù)學公式、點O;
(2)如圖2,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題
畫法:
①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;
③連接C′D′,則△C′D′E′是△AOB的內接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:《第4章 相似三角形》2009年綜合測試(B卷)(解析版) 題型:解答題

我們知道:如果兩個三角形不僅是相似三角形,而且每對對應點所在的直線都經(jīng)過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.
(1)選擇:如圖1,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形.此時,△P′Q′R′與△PQR的位似比、位似中心分別為______;
(A)2、點P,(B)、點P,( C)2、點O,(D)、點O;
(2)如圖2,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題.
畫法:
①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;
③連接C′D′,則△C′D′E′是△AOB的內接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>


同步練習冊答案