欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,△ABC的內(nèi)部有一點P,且D,E,F(xiàn)是P分別以AB,BC,AC為對稱軸的對稱點.若△ABC的內(nèi)角∠A=70°,∠B=60°,∠C=50°,則∠ADB+∠BEC+∠CFA=( 。
A.180°B.270°C.360°D.480°
魔方格
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 滬科八年級版 2009-2010學(xué)年 第19~26期 總175~182期 滬科版 題型:013

如圖,△ABC的內(nèi)部有一點P,且點D、E、F分別是點P關(guān)于邊AB、BC、AC對稱的對稱點.若∠BAC=70°,∠ABC=60°,則∠ADB+∠BEC+∠CFA=

[  ]

A.180°

B.270°

C.360°

D.480°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,,,有一個圓心角為,半徑的長等于的扇形繞點C旋轉(zhuǎn),且直線CECF分別與直線交于點M,N

(Ⅰ)當(dāng)扇形繞點C的內(nèi)部旋轉(zhuǎn)時,如圖①,求證:;

思路點撥:考慮符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△沿直線對折,得△,連,只需證就可以了.

請你完成證明過程:

(Ⅱ)當(dāng)扇形CEF繞點C旋轉(zhuǎn)至圖②的位置時,關(guān)系式是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:天津中考真題 題型:解答題

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點M,N。
 
(1)當(dāng)扇形CEF繞點C在∠ACB的內(nèi)部旋轉(zhuǎn)時,如圖1,求證:MN2=AM2+BN2;(思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決,可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了,請你完成證明過程。)
(2)當(dāng)扇形CEF繞點C旋轉(zhuǎn)至圖2的位置時,關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州市仙居中學(xué)九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點M,N.
(1)當(dāng)扇形CEF繞點C在∠ACB的內(nèi)部旋轉(zhuǎn)時,如圖①,求證:MN2=AM2+BN2;
思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.
請你完成證明過程:
(2)當(dāng)扇形CEF繞點C旋轉(zhuǎn)至圖②的位置時,關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山東省濟(jì)南市稼軒中學(xué)中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點M,N.
(1)當(dāng)扇形CEF繞點C在∠ACB的內(nèi)部旋轉(zhuǎn)時,如圖①,求證:MN2=AM2+BN2;
思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.
請你完成證明過程:
(2)當(dāng)扇形CEF繞點C旋轉(zhuǎn)至圖②的位置時,關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河北省石家莊市橋西區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點M,N.
(1)當(dāng)扇形CEF繞點C在∠ACB的內(nèi)部旋轉(zhuǎn)時,如圖①,求證:MN2=AM2+BN2
思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.
請你完成證明過程:
(2)當(dāng)扇形CEF繞點C旋轉(zhuǎn)至圖②的位置時,關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年臺灣省初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:013

如圖,r ABC的內(nèi)部有一點P,且D、E、FP分別以AB、BCAC為對稱軸的對稱點.若r ABC的內(nèi)角Ð A=70°,Ð B=60°,Ð C=50°,則Ð ADBÐ BECÐ CFA=?

[  ]

A.180°

B.270°

C.360°

D.480°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•橋西區(qū)模擬)已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點M,N.
(1)當(dāng)扇形CEF繞點C在∠ACB的內(nèi)部旋轉(zhuǎn)時,如圖①,求證:MN2=AM2+BN2;
思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.
請你完成證明過程:
(2)當(dāng)扇形CEF繞點C旋轉(zhuǎn)至圖②的位置時,關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、如圖,△ABC的內(nèi)部有一點P,且D,E,F(xiàn)是P分別以AB,BC,AC為對稱軸的對稱點.若△ABC的內(nèi)角∠A=70°,∠B=60°,∠C=50°,則∠ADB+∠BEC+∠CFA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC的內(nèi)部有一點P,且D、E、F是P分別以AB、BC、AC為對稱軸的對稱點.
若△ABC的內(nèi)角∠A=70°,∠B=60°,∠C=50°,則∠ADB+∠BEC+∠CFA=
360°
360°

查看答案和解析>>


同步練習(xí)冊答案