欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

平行四邊形具有而非平行四邊形的圖形不具有的性質(zhì)是(  )
A.內(nèi)角和與外角和都是360°
B.不穩(wěn)定性
C.對(duì)角線互相平分
D.最多有三個(gè)鈍角
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、平行四邊形具有而非平行四邊形的圖形不具有的性質(zhì)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平行四邊形具有而非平行四邊形的圖形不具有的性質(zhì)是(  )
A.內(nèi)角和與外角和都是360°
B.不穩(wěn)定性
C.對(duì)角線互相平分
D.最多有三個(gè)鈍角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第4章《視圖與投影》易錯(cuò)題集(41):4.1 視圖(解析版) 題型:選擇題

平行四邊形具有而非平行四邊形的圖形不具有的性質(zhì)是( )
A.內(nèi)角和與外角和都是360°
B.不穩(wěn)定性
C.對(duì)角線互相平分
D.最多有三個(gè)鈍角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《證明(三)》易錯(cuò)題集(14):3.1 平行四邊形(解析版) 題型:選擇題

平行四邊形具有而非平行四邊形的圖形不具有的性質(zhì)是( )
A.內(nèi)角和與外角和都是360°
B.不穩(wěn)定性
C.對(duì)角線互相平分
D.最多有三個(gè)鈍角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

平行四邊形具有而非平行四邊形的圖形不具有的性質(zhì)是


  1. A.
    內(nèi)角和與外角和都是360°
  2. B.
    不穩(wěn)定性
  3. C.
    對(duì)角線互相平分
  4. D.
    最多有三個(gè)鈍角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、下列性質(zhì)中,平行四邊形具有而非平行四邊形不具有的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列性質(zhì)中,平行四邊形具有而非平行四邊形不具有的是( 。
A.內(nèi)角和為360°B.外角和為360°
C.對(duì)角線互相平分D.對(duì)角互補(bǔ) ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

下列性質(zhì)中,平行四邊形具有而非平行四邊形不具有的是


  1. A.
    內(nèi)角和為360°
  2. B.
    外角和為360°
  3. C.
    不確定性
  4. D.
    對(duì)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:探究題

我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬(wàn)事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對(duì)象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.
數(shù)形結(jié)合的基本思想,就是在研究問(wèn)題的過(guò)程中,注意把數(shù)和形結(jié)合起來(lái)考察,斟酌問(wèn)題的具體情形,把圖形性質(zhì)的問(wèn)題轉(zhuǎn)化為數(shù)量關(guān)系的問(wèn)題,或者把數(shù)量關(guān)系的問(wèn)題轉(zhuǎn)化為圖形性質(zhì)的問(wèn)題,使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,化難為易,獲得簡(jiǎn)便易行的成功方案. 例如:求1+2+3+4+…+n的值,其中n是正整數(shù). 對(duì)于這個(gè)求和問(wèn)題,如果采用純代數(shù)的方法(首尾兩頭加),問(wèn)題雖然可以解決,但在求和過(guò)程中,需對(duì)n的奇偶性進(jìn)行討論. 如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來(lái)說(shuō)明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來(lái)求1+2+3+4+…+n的值,
方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為,即1+2+3+4+…+n=
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整數(shù).(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)
(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整數(shù).(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:解答題

我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬(wàn)事休”。數(shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對(duì)象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透。數(shù)形結(jié)合的基本思想,就是在研究問(wèn)題的過(guò)程中,注意把數(shù)和形結(jié)合起來(lái)考察,斟酌問(wèn)題的具體情形,把圖形性質(zhì)的問(wèn)題轉(zhuǎn)化為數(shù)量關(guān)系的問(wèn)題,或者把數(shù)量關(guān)系的問(wèn)題轉(zhuǎn)化為圖形性質(zhì)的問(wèn)題,使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,化難為易,獲得簡(jiǎn)便易行的成功方案。例如,求1+2+3+4+…+n的值,其中n是正整數(shù)。對(duì)于這個(gè)求和問(wèn)題,如果采用純代數(shù)的方法(首尾兩頭加),問(wèn)題雖然可以解決,但在求和過(guò)程中,需對(duì)n的奇偶性進(jìn)行討論。如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來(lái)說(shuō)明數(shù)量關(guān)系的事實(shí),那就非常的直觀,F(xiàn)利用圖形的性質(zhì)來(lái)求1+2+3+4+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的。而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值。為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形。此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為,即1+2+3+4+…+n=。
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù)(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)。
(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù)(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)。

查看答案和解析>>


同步練習(xí)冊(cè)答案