欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

函數(shù)f(x)=
x2+1
x
(
1
2
≤x≤2)
的值域為(  )
A.[2,+∞)B.[
5
2
,+∞)
C.[2,
5
2
]
D.(0,2]
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x2+1
x
(
1
2
≤x≤2)
的值域為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=
x2+1
x
(
1
2
≤x≤2)
的值域為( 。
A.[2,+∞)B.[
5
2
,+∞)
C.[2,
5
2
]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+
a
x
(x>0)有如下性質:如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
b2
x
(x>0)的值域為[6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(x>0,常數(shù)c>0)在定義域內的單調性,并用定義證明(若有多個單調區(qū)間,請選擇一個證明);
(3)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(x>0,常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調性(只須寫出結論,不必證明),并求函數(shù)F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)y=f(x)和其定義域的子集D,若存在常數(shù)M,使得對于任意的x1∈D,存在唯一的x2∈D,滿足等式
f(x1)+f(x2)
2
=M
,則稱M為f(x)在D上的均值.下列函數(shù)中以
1
2
為其在(0,+∞)上的唯一均值的是①②④(填所有你認為符合條件的函數(shù)的序號)①y=(
1
2
)x
;         ②y=
1
x+1
;         ③y=-x2+1;         ④y=log2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質:如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(Ⅰ)如果函數(shù)y=x+
2b
x
(x>0)的值域為[6,+∞),求b的值;
(Ⅱ)研究函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內的單調性,并說明理由;
(Ⅲ)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調性(只須寫出結論,不必證明),并求函數(shù)F(x)=(x2+
1
x
n+(
1
x2
+x
n(n是正整數(shù))在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(x+a)=-
1
x
-1(a∈R)

(Ⅰ)若f(x)的定義域為(-∞,a)∪(a,+∞),求證:f(x)+f(2a-x)=-2對定義域內所有x都成立;
(Ⅱ)若f(x)的定義域為[a+
1
2
,a+1]
時,求f(x)的值域;
(Ⅲ)若f(x)的定義域為(-∞,a)∪(a,+∞),設函數(shù)g(x)=x2+|(x-a)f(x)|,當a≥
1
2
時,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)滿足f(x+a)=-
1
x
-1(a∈R)

(Ⅰ)若f(x)的定義域為(-∞,a)∪(a,+∞),求證:f(x)+f(2a-x)=-2對定義域內所有x都成立;
(Ⅱ)若f(x)的定義域為[a+
1
2
,a+1]
時,求f(x)的值域;
(Ⅲ)若f(x)的定義域為(-∞,a)∪(a,+∞),設函數(shù)g(x)=x2+|(x-a)f(x)|,當a≥
1
2
時,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:上海 題型:解答題

已知函數(shù)y=x+
a
x
有如下性質:如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)的值域為[6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內的單調性,并說明理由;
(3)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調性(只須寫出結論,不必證明),并求函數(shù)F(x)=(x2+
1
x
)n
+(
1
x2
+x)n
(n是正整數(shù))在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=sin|x|的最小正周期為π;
②若函數(shù)f(x)=log2(x2-ax+1)的值域為R,則-2<a<2;
③若函數(shù)f(x)對任意x∈R都有f(x)=-f(2-x),且最小正周期為3,則f(x)的圖象關于點(-
1
2
,0)
對稱;
④極坐標方程 4sin2θ=3 表示的圖形是兩條相交直線;
⑤若函數(shù)f(x)=(1+x)
1
x
(x>0)
,則存在無數(shù)多個正實數(shù)M,使得|f(x)|≤M成立;
其中真命題的序號是
③④⑤
③④⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,正確命題的序號是
 
;
(1)奇函數(shù)f(x)在[3,4]上有最大值m,則在[-4,-3]上有最大值-m;
(2)函數(shù)f(x)=
1
x
在定義域上為單調減函數(shù);
(3)函數(shù)f(x)=lg(x+
x2+1
)
為奇函數(shù);
(4)函數(shù)y=x+
1
x
,x∈[
1
2
,3]
的值域是[
5
2
,
10
3
]

查看答案和解析>>


同步練習冊答案