欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,直線l是平面α的斜線,AB⊥α,B為垂足,如果θ=45°,∠AOC=60°,則∠BOC=( 。
魔方格
A.45°B.30°C.60°D.15°
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線l是平面α的斜線,AB⊥α,B為垂足,如果θ=45°,∠AOC=60°,則∠BOC=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l是平面α的斜線,AB⊥α,B為垂足,如果θ=45°,∠AOC=60°,則∠BOC=( 。
精英家教網(wǎng)
A.45°B.30°C.60°D.15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,直線l是平面α的斜線,AB⊥α,B為垂足,如果θ=45°,∠AOC=60°,則∠BOC=


  1. A.
    45°
  2. B.
    30°
  3. C.
    60°
  4. D.
    15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,l是平面α的斜線,斜足是O,A是l上任意一點,AB是平面α的垂線,B是垂足,設(shè)OD是平面α內(nèi)與OB不同的一條直線,AC垂直于OD于C,若直線l與平面α所成的角θ=45°,∠BOC=45°,求∠AOC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省高考真題 題型:解答題

如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點,∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P。
(1)建立適當?shù)钠矫嬷苯亲鴺讼担笄C的方程;
(2)設(shè)過點D的直線l與曲線C相交于不同的兩點E、F,若△OEF的面積不小于2,求直線l斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市西城區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,A,B是橢圓+=1(a>b>0))的兩個頂點.|AB|=,直線AB的斜率為-
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l平行于AB,與x,y軸分別交于點M,N,與橢圓相交于C,D.證明:△OCM的面積等于△0DN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)如圖,A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0))的兩個頂點.|AB|=
5
,直線AB的斜率為-
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l平行于AB,與x,y軸分別交于點M,N,與橢圓相交于C,D.證明:△OCM的面積等于△0DN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北武漢市高三2月調(diào)研測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,矩形ABCD中,|AB|2,|BC|2EF,G,H分別矩形四條邊的中點,分別以HF,EG所在直線為x軸,y軸建立平面直角坐標系,已知λ,λ,其中0λ1

1)求證:直線ERGR′的交點M在橢圓Γy21上;

2N直線lyx2上且不在坐標軸上的任意一點,F1、F2分別為橢圓Γ的左、右焦點,直線NF1NF2與橢圓Γ的交點分別為PQS、T是否存在點N,使直線OP、OQOS、OT的斜率kOP、kOQ、kOS、kOT滿足kOPkOQkOSkOT0?若存在,求出點N的坐標;若不存在,說明理由

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知=λ,=λ,其中0<λ<1.

(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知=λ,=λ,其中0<λ<1.

(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案