欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若平面α、β的法向量分別為,b=(-1,2,6),則 

A.α∥β    
B.α與β相交但不垂直
C.α⊥β    
D.α∥β或α與β重合
相關習題

科目:高中數(shù)學 來源:同步題 題型:單選題

若平面α、β的法向量分別為,b=(-1,2,6),則 
[     ]
A.α∥β    
B.α與β相交但不垂直
C.α⊥β    
D.α∥β或α與β重合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若平面α、β的法向量分別為
m
=(1,-5,2),
n
=(-3,1,4),則( 。
A、α⊥β
B、α∥β
C、α、β相交但不垂直
D、以上均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若平面α,β的法向量分別為
a
=(-1,2,4),
b
=(x,-1,-2),并且α∥β,則x的值為( 。
A、10
B、-10
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

下面命題中,正確命題的個數(shù)為
①若數(shù)學公式1、數(shù)學公式2分別是平面α、β的法向量,則數(shù)學公式1數(shù)學公式2?α∥β;
②若數(shù)學公式1數(shù)學公式2分別是平面α、β的法向量,則α⊥β?數(shù)學公式1數(shù)學公式2=0;
③若數(shù)學公式是平面α的法向量,數(shù)學公式、數(shù)學公式是α內(nèi)兩不共線向量數(shù)學公式數(shù)學公式數(shù)學公式,(λ,μ∈R)則數(shù)學公式數(shù)學公式=0;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省駐馬店市泌陽一中高二(上)12月月考數(shù)學試卷(理科)(解析版) 題型:選擇題

下面命題中,正確命題的個數(shù)為( )
①若1、2分別是平面α、β的法向量,則12?α∥β;
②若1、2分別是平面α、β的法向量,則α⊥β?12=0;
③若是平面α的法向量,、是α內(nèi)兩不共線向量,(λ,μ∈R)則=0;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面命題中,正確命題的個數(shù)為( 。
①若
n
1
n
2分別是平面α、β的法向量,則
n
1
n
2?α∥β;
②若
n
1、
n
2分別是平面α、β的法向量,則α⊥β?
n
1
n
2=0;
③若
n
是平面α的法向量,
b
c
是α內(nèi)兩不共線向量
a
b
c
,(λ,μ∈R)則
n
a
=0;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下面命題中,正確命題的個數(shù)為(  )
①若
n
1、
n
2分別是平面α、β的法向量,則
n
1
n
2β;
②若
n
1、
n
2分別是平面α、β的法向量,則α⊥β?
n
1
n
2=0;
③若
n
是平面α的法向量,
b
、
c
是α內(nèi)兩不共線向量
a
b
c
,(λ,μ∈R)則
n
a
=0;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期模擬預測理科數(shù)學試卷(解析版) 題型:解答題

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知直三棱柱中, , , 的交點, 若.

(1)求的長;  (2)求點到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標系, 設|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點A到平面ABC的距離為H=||=……… 8分

(3) 設平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>


同步練習冊答案