欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,圓A的方程為:(x+3)2+ y2=100,定點B(3,0),動點P為圓A上的任意一點,線段BP的垂直平分線和半徑AP相交于點Q,當點P在圓A 上運動時,動點Q的軌跡方程為

A.
B.
C.
D.
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圓A的方程為:(x+3)2+y2=100,定點B(3,0),動點P為圓A上的任意一點.線段BP的垂直平分線和半徑AP相交于點Q,當點P在圓A上運動時,
(1)求|QA|+|QB|的值,并求動點Q的軌跡方程;
(2)設Q點的橫坐標為x,記PQ的長度為f(x),求函數(shù)f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:專項題 題型:解答題

如圖,圓A的方程為:(x+3)2+ y2=100,定點B(3,0),動點P為圓A上的任意一點,線段BP的垂直平分線和半徑AP相交于點Q,當點P在圓A 上運動時。
(1)求|QA|+|QB|的值,并求動點Q的軌跡方程;
(2)設Q點的橫坐標為x,記PQ的長度為f(x),求函數(shù)f(x)的值域。

查看答案和解析>>

科目:高中數(shù)學 來源:2009年廣東省汕頭市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

如圖,圓A的方程為:(x+3)2+y2=100,定點B(3,0),動點P為圓A上的任意一點.線段BP的垂直平分線和半徑AP相交于點Q,當點P在圓A上運動時,
(1)求|QA|+|QB|的值,并求動點Q的軌跡方程;
(2)設Q點的橫坐標為x,記PQ的長度為f(x),求函數(shù)f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

14、如圖,點O是已知線段AB上一點,以OA為半徑的⊙O交線段AB于點C,以線段OB為直徑的圓與⊙O的一個交點為D,過點A作AB的垂線交BD的延長線于點M.
(1)求證:BD是⊙O的切線;
(2)若BC,BD的長度是關于x的方程x2-6x+8=0的兩個根,求⊙O的半徑;
(3)在上述條件下,求線段MD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,F(xiàn)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A,B分別是橢圓的兩個頂點,橢圓的離心率為
1
2
,點C在x軸上,BC⊥BF,B,C,F(xiàn)三點確定的圓M恰好與直線l1:x+
3
y+3=0
相切
(1)求橢圓的方程;
(2)過點A的直線l2與圓M交于P,Q兩點,且
MP
MQ
=-2
,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1.平面上有點P滿足:存在過點P的無窮多對互相垂直的直線l1,l2,它們分別與圓M,N相交,且直線l1被圓M截得的弦長與直線l2被圓N截得的弦長的比為
3
:1
,試求所有滿足條件的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知焦點在x軸上的橢圓
x2
20
+
y2
b2
=1(b>0)
經(jīng)過點M(4,1),直線l:y=x+m交橢圓于A,B兩不同的點.
(1)求該橢圓的標準方程;
(2)求實數(shù)m的取值范圍;
(3)是否存在實數(shù)m,使△ABM為直角三角形,若存在,求出m的值,若不存,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在橢圓C中,點F1是左焦點,A(a,0),B(0,b)分別為右頂點和上頂點,點O為橢圓的中心.又點P在橢圓上,且滿足條件:OP∥AB,點H是點P在x軸上的射影.
(1)求證:當a取定值時,點H必為定點;
(2)如果點H落在左頂點與左焦點之間,試求橢圓離心率的取值范圍;
(3)如果以OP為直徑的圓與直線AB相切,且凸四邊形ABPH的面積等于3+
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1,已知點P(1,
3
),過點P作互相垂直且分別與圓M圓N相交的直線l1,l2,設l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,
s
t
是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在坐標平面內(nèi),M、N是x軸上關于原點O對稱的兩點,P是上半平面內(nèi)一點,△PMN的面積為
3
2
,點A坐標為(1+
3
,
3
2
),
MP
=m•
OA
(m為常數(shù))
,
MN
OP
=|
MN
|

(Ⅰ)求以M、N為焦點且過點P的橢圓方程;
(Ⅱ)過點B(-1,0)的直線l交橢圓于C、D兩點,交直線x=-4于點E,點B、E分
CD
的比分別為λ1
、λ2,求證:λ12=0.

查看答案和解析>>


同步練習冊答案