| 若存在實數(shù)a∈[1,3],使得不等式ax2+(a-2)x-2>0成立,則實數(shù)x的取值范圍是 |
A.(-∞,-1)∪(2,+∞) B.[-1, ] C.(-∞,-1)∪( ,+∞) D.(-1,2) |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:期末題
題型:單選題
若存在實數(shù)a∈[1,3],使得不等式ax2+(a-2)x-2>0成立,則實數(shù)x的取值范圍是
A.(-∞,-1)∪(2,+∞)
B.[-1,

]
C.(-∞,-1)∪(

,+∞)
D.(-1,2)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若存在實數(shù)a∈R,使得不等式 x|x-a|+b<0對于任意的x∈[0,1]都成立,則實數(shù)b的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:陜西省西安市第一中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)文科試題
題型:022
若存在α∈[1,3],使得不等式ax2+(a-2)x-2>0成立,則實數(shù)x的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點;
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;
(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點;
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;
(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年浙江省臺州中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版)
題型:解答題
已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年浙江省臺州中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版)
題型:解答題
已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.
查看答案和解析>>