欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

在f(m,n)中,m,n,f(m,n)∈N*,且對任意的m,n都有(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;
(3)f(m+1,1)=2f(m,1)。
給出下面三個結(jié)論:①f(1,5)=9,②f(5,1)=16;③f(5,6)=26,其中正確的個數(shù)為

A.0
B.1
C.2
D.3
D
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:陜西省模擬題 題型:單選題

在f(m,n)中,m,n,f(m,n)∈N*,且對任意的m,n都有(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;
(3)f(m+1,1)=2f(m,1)。
給出下面三個結(jié)論:①f(1,5)=9,②f(5,1)=16;③f(5,6)=26,其中正確的個數(shù)為
[     ]
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是正整數(shù),在f(x)=(1+x)m+(1+x)n中的x系數(shù)為7.
(1)求f(x)的展開式,x2的系數(shù)的最小值a;
(2)當(dāng)f(x)的展開式中的x2系數(shù)為a時,求x3的系數(shù)β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(m,n)上的可導(dǎo)函數(shù)f(x)的導(dǎo)數(shù)為f'(x),若當(dāng)x∈[a,b]?(m,n)時,有|f'(x)|≤1,則稱函數(shù)f(x)為[a,b]上的平緩函數(shù).下面給出四個結(jié)論:
①y=cosx是任何閉區(qū)間上的平緩函數(shù);
②y=x2+lnx是[
1
2
,1]
上的平緩函數(shù);
③若f(x)=
1
3
x3-mx2-3m2x+1是[0,
1
2
]上的平緩函數(shù),則實(shí)數(shù)m的取值范圍是[-
3
3
,
1
2
]
;
④若y=f(x)是[a,b]上的平緩函數(shù),則有|f(a)-f(b)|≤|a-b|.
這些結(jié)論中正確的是
①③④
①③④
(多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m,n是正整數(shù),在f(x)=(1+x)m+(1+x)n中的x系數(shù)為7.
(1)求f(x)的展開式,x2的系數(shù)的最小值a;
(2)當(dāng)f(x)的展開式中的x2系數(shù)為a時,求x3的系數(shù)β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在(m,n)上的可導(dǎo)函數(shù)f(x)的導(dǎo)數(shù)為f'(x),若當(dāng)x∈[a,b]?(m,n)時,有|f'(x)|≤1,則稱函數(shù)f(x)為[a,b]上的平緩函數(shù).下面給出四個結(jié)論:
①y=cosx是任何閉區(qū)間上的平緩函數(shù);
②y=x2+lnx是[
1
2
,1]
上的平緩函數(shù);
③若f(x)=
1
3
x3-mx2-3m2x+1是[0,
1
2
]上的平緩函數(shù),則實(shí)數(shù)m的取值范圍是[-
3
3
,
1
2
]

④若y=f(x)是[a,b]上的平緩函數(shù),則有|f(a)-f(b)|≤|a-b|.
這些結(jié)論中正確的是______(多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知m,n是正整數(shù),在f(x)=(1+x)m+(1+x)n中的x系數(shù)為7.
(1)求f(x)的展開式,x2的系數(shù)的最小值a;
(2)當(dāng)f(x)的展開式中的x2系數(shù)為a時,求x3的系數(shù)β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省達(dá)州市高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在(m,n)上的可導(dǎo)函數(shù)f(x)的導(dǎo)數(shù)為f'(x),若當(dāng)x∈[a,b]?(m,n)時,有|f'(x)|≤1,則稱函數(shù)f(x)為[a,b]上的平緩函數(shù).下面給出四個結(jié)論:
①y=cosx是任何閉區(qū)間上的平緩函數(shù);
②y=x2+lnx是上的平緩函數(shù);
③若f(x)=x3-mx2-3m2x+1是[0,]上的平緩函數(shù),則實(shí)數(shù)m的取值范圍是;
④若y=f(x)是[a,b]上的平緩函數(shù),則有|f(a)-f(b)|≤|a-b|.
這些結(jié)論中正確的是    (多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省赤壁市南鄂高中高二(上)期末摸底數(shù)學(xué)試卷(解析版) 題型:解答題

已知m,n是正整數(shù),在f(x)=(1+x)m+(1+x)n中的x系數(shù)為7.
(1)求f(x)的展開式,x2的系數(shù)的最小值a;
(2)當(dāng)f(x)的展開式中的x2系數(shù)為a時,求x3的系數(shù)β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶市重點(diǎn)高中高考數(shù)學(xué)模擬試卷9(解析版) 題型:解答題

已知m=,n=(cosωx-sinωx,2sinωx),其中ω>0,若函數(shù)f(x)=m•n,且f(x)的對稱中心到f(x)對稱軸的最近距離不小于
(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,且a=1,b+c=2,當(dāng)ω取最大值時,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A、B、C的對邊,
m
=(b,2a-c),
n
=(cosB,cosC),且
m
n

(1)求角B的大;
(2)設(shè)f(x)=cos(ωx-
B
2
)+sinx(ω>0),且f(x)的最小正周期為π,求f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>


同步練習(xí)冊答案