| 已知f(x)為偶函數(shù),且f(1+x)=f(3-x),當(dāng)-2≤x≤0時(shí),f(x)=3x,若n∈N*,an=f(n),則a2011= |
A. ![]() B.3 C.-3 D. |
科目:高中數(shù)學(xué) 來源:廣東省模擬題 題型:單選題
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省蕪湖一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
為偶函數(shù),且f(3)<f(5).科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省蕪湖一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省湛江市吳川市川西中學(xué)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江西省上饒市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題
科目:高中數(shù)學(xué) 來源:廣東湛江十中2008屆高三第四次月考數(shù)學(xué)(理科) 題型:013
已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,那么在區(qū)間[-1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4個(gè)不同的根,則k的取值范圍是
A.![]()
B.(-1,0)
C.![]()
D.![]()
科目:高中數(shù)學(xué) 來源:廣東湛江十中2008屆高三第四次月考數(shù)學(xué)(文科) 題型:013
已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,那么在區(qū)間[-1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4個(gè)不同的根,則k的取值范圍是
A.![]()
B.(-1,0)
C.![]()
D.![]()
科目:高中數(shù)學(xué) 來源:重慶八中2007級(jí)高三數(shù)學(xué)模擬考試(文) 題型:044
已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a、b∈R都滿足f(a·b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判斷f(x)的奇偶性,并證明你的結(jié)論;
(3)若
Sn表示數(shù)列{bn}的前n項(xiàng)和.試問:是否存在關(guān)于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)·g(n)對(duì)于一切不小于2的自然數(shù)n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.
科目:高中數(shù)學(xué) 來源:吉林省長(zhǎng)春市十一中2009-2010學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:022
已知f(x)是R上的偶函數(shù),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3),且f(1)=2,則f(2009)的值為________.
科目:高中數(shù)學(xué) 來源:汕頭市2007年普通高校招生模擬考試(二)、理科數(shù)學(xué) 題型:013
已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,那么在區(qū)間[-1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4個(gè)不同的根,則k的取值范圍是
A.![]()
B.(-1,0)
C.![]()
D.![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com