欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知數(shù)列{an}中,a1=1前n項(xiàng)和為Sn,且點(diǎn)P(an,an+1)(n∈N*)在直線x-y+1=0上,則=

A.
B.
C.
D.
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn,對(duì)任意的n≥2,3Sn-4,an,2-總成等差數(shù)列.

(1)求a2、a3、a4的值;

(2)求通項(xiàng)公式an.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn,對(duì)任意的n≥2,3Sn-4,an,2-總成等差數(shù)列.
(1)求a2、a3、a4的值;
(2)求通項(xiàng)公式an.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期中題 題型:單選題

已知數(shù)列{an}中,a1=1前n項(xiàng)和為Sn,且點(diǎn)P(an,an+1)(n∈N*)在直線x-y+1=0上,則=

[     ]

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,且an=
n
n-1
an-1+2n•3n-2(n≥2,n∈N?).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
3n-1
an
 (n∈N?),數(shù)列{bn}的前n項(xiàng)和為Sn,試比較S2與n的大。
(3)令cn=
an+1
n+1
 (n∈N*),數(shù)列{
2cn
(cn-1)2
}的前n項(xiàng)和為Tn.求證:對(duì)任意n∈N*,都有 Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,前n項(xiàng)和為SnSn+1=
3
2
Sn+1,(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
an
}
的前n項(xiàng)和為Tn,求滿足不等式3Tn>Sn的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an=
2n
n-1
an-1+n(n≥2,n∈N*).且bn=
an
n
+λ為等比數(shù)列,
(Ⅰ)求實(shí)數(shù)λ及數(shù)列{bn}、{an}的通項(xiàng)公式;
(Ⅱ)若Sn為{an}的前n項(xiàng)和,求Sn;
(Ⅲ)令cn=
bn
(bn-1)2
,數(shù)列{cn}前n項(xiàng)和為Tn.求證:對(duì)任意n∈N*,都有Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an中,a1=1,a2=a-1(a≠1,a為實(shí)常數(shù)),前n項(xiàng)和Sn恒為正值,且當(dāng)n≥2時(shí),
1
Sn
=
1
an
-
1
an+1

(1)求證:數(shù)列Sn是等比數(shù)列;
(2)設(shè)an與an+2的等差中項(xiàng)為A,比較A與an+1的大小;
(3)設(shè)m是給定的正整數(shù),a=2.現(xiàn)按如下方法構(gòu)造項(xiàng)數(shù)為2m有窮數(shù)列bn:當(dāng)k=m+1,m+2,…,2m時(shí),bk=ak•ak+1;當(dāng)k=1,2,…,m時(shí),bk=b2m-k+1.求數(shù)列{bn}的前n項(xiàng)和為Tn(n≤2m,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=2an-n2+3n(n∈N+),
(1)是否存在常數(shù)λ,μ,使得數(shù)列{an+λn2+μn}是等比數(shù)列,若存在,求λ,μ的值,若不存在,說明理由;
(2)設(shè)bn=an-n2+n(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Sn,是否存在常數(shù)c,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立?并證明你的結(jié)論;
(3)設(shè)cn=
1
an+n-2n-1
,Tn=c1+c2+…+c3,證明
6n
(n+1)(2n+1)
<Tn
5
3
(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和sn滿足sn2=an(sn-
1
2
)

(1)證明:數(shù)列{
1
sn
}
為等差數(shù)列,并求sn表達(dá)式;
(2)設(shè)bn=
sn
2n+1
,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an=
2n
n-1
an-1+n(n≥2,n∈N*)
,且bn=
an
n
,{bn}為等比數(shù)列.
(Ⅰ)求實(shí)數(shù)λ及數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Sn是數(shù)列{an}的前n項(xiàng)和,求Sn

查看答案和解析>>


同步練習(xí)冊(cè)答案