| 已知直線y=2x +3,當(dāng)0≤y≤3時,自變量x的取值范圍是 |
A.x≤0 B.x≥ C. ≤x≤0 D.x< ![]() |
科目:初中數(shù)學(xué) 來源:同步題 題型:單選題
科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市育才中學(xué)九年級上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題
已知:拋物線y1=-2x2+2與直線y2=2x+2相交
點(diǎn)A和點(diǎn)B, ![]()
(1)求出點(diǎn)A和點(diǎn)B的坐標(biāo)。
(2)觀察圖象,請直接寫出y1>y2的自變量x的取值范圍。
(3)當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,
取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.(例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.) 求:使得M=1的x值。=】
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知:拋物線y1=-2x2+2與直線y2=2x+2相交
點(diǎn)A和點(diǎn)B,
![]()
(1)求出點(diǎn)A和點(diǎn)B的坐標(biāo)。
(2)觀察圖象,請直接寫出y1>y2的自變量x的取值范圍。
(3)當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,
取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.(例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.) 求:使得M=1的x值。=】
科目:初中數(shù)學(xué) 來源:不詳 題型:解答題
科目:初中數(shù)學(xué) 來源:2007年江蘇地區(qū)數(shù)學(xué)學(xué)科九年級第三次月考數(shù)學(xué)試卷資料-蘇教版 題型:044
已知:如下圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為AD邊上一動點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對角線AC相切于點(diǎn)F,過P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)P1位置時,直線L恰好經(jīng)過點(diǎn)B,此時直線的解析式是y=2x+1.
(1)求BC、AP1的長;
(2)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(3)以點(diǎn)E為圓心作⊙E與x軸相切.
①探究并猜想:⊙P與⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍;
②當(dāng)直線L把矩形ABCD分成兩部分的面積之比值為3:5時,則⊙P和⊙E的位置關(guān)系如何?并說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
| k | x |
科目:初中數(shù)學(xué) 來源: 題型:解答題
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省湖州市吳興區(qū)九年級(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
科目:初中數(shù)學(xué) 來源:2013年重慶市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題
科目:初中數(shù)學(xué) 來源:2012年貴州省貴陽市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com