欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖所示,AB=A′B′,∠A=∠A′,∠B=∠B′,則△ABC≌△A′B′C′的依據是 


A.SAS
B.SSS
C.ASA
D.AAS
相關習題

科目:初中數(shù)學 來源:月考題 題型:單選題

如圖所示,AB=A′B′,∠A=∠A′,∠B=∠B′,則△ABC≌△A′B′C′的依據是 
[     ]
A.SAS
B.SSS
C.ASA
D.AAS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據題意,把下列推理所依據的命題寫出來,并指出是公理還是定理.
(1)如圖所示,若∠1=∠2,則a∥b;
(2)在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,∠A=∠A′,則△ABC≌△A′B′C′;
(3)如果a=b,b=c,那么a=c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

根據題意,把下列推理所依據的命題寫出來,并指出是公理還是定理.
(1)如圖所示,若∠1=∠2,則a∥b;
(2)在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,∠A=∠A′,則△ABC≌△A′B′C′;
(3)如果a=b,b=c,那么a=c.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(山西卷)數(shù)學(帶解析) 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據2)
反思交流:
(1)上述證明過程中的“依據1”和“依據2”分別是指:
依據1:                                                                                   
依據2:                                     
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關系與位置關系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據2)
反思交流:
(1)上述證明過程中的“依據1”和“依據2”分別是指:
依據1:                                                        ;
依據2:                                                        
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關系與位置關系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據2)
反思交流:
(1)上述證明過程中的“依據1”和“依據2”分別是指:
依據1:                                                        ;
依據2:                                                        
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關系與位置關系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:作業(yè)寶
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據2)
反思交流:
(1)上述證明過程中的“依據1”和“依據2”分別是指:
依據1:______
依據2:______
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關系與位置關系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省無錫市南長區(qū)九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據2)
反思交流:
(1)上述證明過程中的“依據1”和“依據2”分別是指:
依據1:______
依據2:______
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關系與位置關系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年湖北省恩施州巴東縣大支坪民族中學中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據2)
反思交流:
(1)上述證明過程中的“依據1”和“依據2”分別是指:
依據1:______
依據2:______
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關系與位置關系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年山西省中考數(shù)學試卷(解析版) 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關系,并說明理由.
探究展示:小宇同學展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據2)
反思交流:
(1)上述證明過程中的“依據1”和“依據2”分別是指:
依據1:______
依據2:______
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關系與位置關系,并寫出證明過程.

查看答案和解析>>


同步練習冊答案