欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
一個數平方后再求平方根,所得的結果和原數的關系為

A.相等
B.互為相反數
C.絕對值相等
D.以上答案都不對
相關習題

科目:初中數學 來源:同步題 題型:單選題

一個數平方后再求平方根,所得的結果和原數的關系為
[     ]
A.相等
B.互為相反數
C.絕對值相等
D.以上答案都不對

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

根據所給的基本材料,請你進行適當的處理,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數表示).
精英家教網
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).
精英家教網
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數關系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數學 來源:2010年重慶市萬州區(qū)初中數學教師專業(yè)知識競賽試卷(解析版) 題型:解答題

根據所給的基本材料,請你進行適當的處理,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數關系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

根據所給的基本材料,請你進行適當的處理,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數關系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

(1)請先將下式化簡,再選擇一個你喜歡又使原式有意義的數代入求值數學公式;
(2)計算:數學公式
(3)某地為了解從2004年以來初中學生參加基礎教育課程改革的情況,隨機調查了本地區(qū)1000名初中學生學習能力優(yōu)秀的情況.調查時,每名學生可以在動手能力,表達能力,創(chuàng)新能力,解題技巧,閱讀能力和自主學習等六個方面中選擇自己認為是優(yōu)秀的項.調查后繪制了如圖所示的統(tǒng)計圖.請根據統(tǒng)計圖反映的信息解答下列問題:
①學生獲得優(yōu)秀人數最多的一項和最有待加強的一項各是什么?
②這1000名學生平均每人獲得幾個項目為優(yōu)秀?
③若該地區(qū)共有2萬名初中學生,請估計他們表達能力為優(yōu)秀的學生有多少人?

查看答案和解析>>

科目:初中數學 來源:第4章《統(tǒng)計估計》中考題集(04):4.2 用樣本估計總體(解析版) 題型:解答題

(1)請先將下式化簡,再選擇一個你喜歡又使原式有意義的數代入求值;
(2)計算:;
(3)某地為了解從2004年以來初中學生參加基礎教育課程改革的情況,隨機調查了本地區(qū)1000名初中學生學習能力優(yōu)秀的情況.調查時,每名學生可以在動手能力,表達能力,創(chuàng)新能力,解題技巧,閱讀能力和自主學習等六個方面中選擇自己認為是優(yōu)秀的項.調查后繪制了如圖所示的統(tǒng)計圖.請根據統(tǒng)計圖反映的信息解答下列問題:
①學生獲得優(yōu)秀人數最多的一項和最有待加強的一項各是什么?
②這1000名學生平均每人獲得幾個項目為優(yōu)秀?
③若該地區(qū)共有2萬名初中學生,請估計他們表達能力為優(yōu)秀的學生有多少人?

查看答案和解析>>

科目:初中數學 來源:第7章《銳角三角函數》中考題集(12):7.3 特殊角的三角函數(解析版) 題型:解答題

(1)請先將下式化簡,再選擇一個你喜歡又使原式有意義的數代入求值;
(2)計算:;
(3)某地為了解從2004年以來初中學生參加基礎教育課程改革的情況,隨機調查了本地區(qū)1000名初中學生學習能力優(yōu)秀的情況.調查時,每名學生可以在動手能力,表達能力,創(chuàng)新能力,解題技巧,閱讀能力和自主學習等六個方面中選擇自己認為是優(yōu)秀的項.調查后繪制了如圖所示的統(tǒng)計圖.請根據統(tǒng)計圖反映的信息解答下列問題:
①學生獲得優(yōu)秀人數最多的一項和最有待加強的一項各是什么?
②這1000名學生平均每人獲得幾個項目為優(yōu)秀?
③若該地區(qū)共有2萬名初中學生,請估計他們表達能力為優(yōu)秀的學生有多少人?

查看答案和解析>>

科目:初中數學 來源:第1章《解直角三角形》中考題集(10):1.1 銳角三角函數(解析版) 題型:解答題

(1)請先將下式化簡,再選擇一個你喜歡又使原式有意義的數代入求值;
(2)計算:;
(3)某地為了解從2004年以來初中學生參加基礎教育課程改革的情況,隨機調查了本地區(qū)1000名初中學生學習能力優(yōu)秀的情況.調查時,每名學生可以在動手能力,表達能力,創(chuàng)新能力,解題技巧,閱讀能力和自主學習等六個方面中選擇自己認為是優(yōu)秀的項.調查后繪制了如圖所示的統(tǒng)計圖.請根據統(tǒng)計圖反映的信息解答下列問題:
①學生獲得優(yōu)秀人數最多的一項和最有待加強的一項各是什么?
②這1000名學生平均每人獲得幾個項目為優(yōu)秀?
③若該地區(qū)共有2萬名初中學生,請估計他們表達能力為優(yōu)秀的學生有多少人?

查看答案和解析>>

科目:初中數學 來源:第28章《銳角三角函數》中考題集(11):28.1 銳角三角函數(解析版) 題型:解答題

(1)請先將下式化簡,再選擇一個你喜歡又使原式有意義的數代入求值;
(2)計算:;
(3)某地為了解從2004年以來初中學生參加基礎教育課程改革的情況,隨機調查了本地區(qū)1000名初中學生學習能力優(yōu)秀的情況.調查時,每名學生可以在動手能力,表達能力,創(chuàng)新能力,解題技巧,閱讀能力和自主學習等六個方面中選擇自己認為是優(yōu)秀的項.調查后繪制了如圖所示的統(tǒng)計圖.請根據統(tǒng)計圖反映的信息解答下列問題:
①學生獲得優(yōu)秀人數最多的一項和最有待加強的一項各是什么?
②這1000名學生平均每人獲得幾個項目為優(yōu)秀?
③若該地區(qū)共有2萬名初中學生,請估計他們表達能力為優(yōu)秀的學生有多少人?

查看答案和解析>>

科目:初中數學 來源:第1章《解直角三角形》中考題集(10):1.2 30°,45°,60°角的三角函數值(解析版) 題型:解答題

(1)請先將下式化簡,再選擇一個你喜歡又使原式有意義的數代入求值;
(2)計算:;
(3)某地為了解從2004年以來初中學生參加基礎教育課程改革的情況,隨機調查了本地區(qū)1000名初中學生學習能力優(yōu)秀的情況.調查時,每名學生可以在動手能力,表達能力,創(chuàng)新能力,解題技巧,閱讀能力和自主學習等六個方面中選擇自己認為是優(yōu)秀的項.調查后繪制了如圖所示的統(tǒng)計圖.請根據統(tǒng)計圖反映的信息解答下列問題:
①學生獲得優(yōu)秀人數最多的一項和最有待加強的一項各是什么?
②這1000名學生平均每人獲得幾個項目為優(yōu)秀?
③若該地區(qū)共有2萬名初中學生,請估計他們表達能力為優(yōu)秀的學生有多少人?

查看答案和解析>>


同步練習冊答案