欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

[試題分析一]: 過圓心M作直線:y=x的垂線交與N點.過N點作圓的切線能夠滿足條件.不難求出夾角為60.[試題分析二]:明白N點后.用圖象法解之也很方便[高考考點]: 直線與圓的位置關系.[易錯提醒]: N點找不到.[備考提示]: 數(shù)形結合這個解題方法在高考中應用的非常普遍.希望加強訓練. 查看更多

 

題目列表(包括答案和解析)

【選做題】本題包括A,B,C,D四小題,請選定其中兩題作答,每小題10分,共計20分,解答時應寫出文字說明,證明過程或演算步驟.

A選修4—1:幾何證明選講

自圓O外一點P引圓的一條切線PA,切點為A,MPA的中點,

過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,

BPC=40°,求∠MPB的大。

 

查看答案和解析>>

【必做題】本題滿分10分.解答時應寫出文字說明、證明過程或演算步驟.

甲、乙、丙三個同學一起參加某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該高校的預錄取生(可在高考中加分錄。瑑纱慰荚囘^程相互獨立.根據(jù)甲、乙、丙三個同學的平時成績分析,甲、乙、丙三個同學能通過筆試的概率分別是0.6,0.5,0.4,能通過面試的概率分別是0.5,0.6,0.75.

(1)求甲、乙、丙三個同學中恰有一人通過筆試的概率;

(2)設經過兩次考試后,能被該高校預錄取的人數(shù)為,求隨機變量的期望

查看答案和解析>>

【必做題】本題滿分10分.解答時應寫出文字說明、證明過程或演算步驟.

甲、乙、丙三個同學一起參加某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該高校的預錄取生(可在高考中加分錄。瑑纱慰荚囘^程相互獨立.根據(jù)甲、乙、丙三個同學的平時成績分析,甲、乙、丙三個同學能通過筆試的概率分別是0.6,0.5,0.4,能通過面試的概率分別是0.5,0.6,0.75.

(1)求甲、乙、丙三個同學中恰有一人通過筆試的概率;

(2)設經過兩次考試后,能被該高校預錄取的人數(shù)為,求隨機變量的期望

查看答案和解析>>

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:
男性 女性 合計
反感 10
不反感 8
合計 30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請將上面的列表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關?(x2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,當Χ2<2.706時,沒有充分的證據(jù)判定變量性別有關,當Χ2>2.706時,有90%的把握判定變量性別有關,當Χ2>3.841時,有95%的把握判定變量性別有關,當Χ2>6.635時,有99%的把握判定變量性別有關)
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

【必做題】解答時應寫出文字說明、證明過程或演算步驟.
某射擊運動員向一目標射擊,該目標分為3個不同部分,第一、二、三部分面積之比為1:3:6.擊中目標時,擊中任何一部分的概率與其面積成正比.
(1)若射擊4次,每次擊中目標的概率為
13
且相互獨立.設ξ表示目標被擊中的次數(shù),求ξ的分布列和數(shù)學期望E(ξ);
(2)若射擊2次均擊中目標,A表示事件“第一部分至少被擊中1次或第二部分被擊中2次”,求事件A發(fā)生的概率.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(Ⅰ)

因為函數(shù)的最小正周期為,且,

所以,解得

(Ⅱ)由(Ⅰ)得

因為

所以,

所以

因此,即的取值范圍為

16.(共14分)

解法一:

(Ⅰ)取中點,連結

,

,

平面

平面,

(Ⅱ),

,

,即,且

平面

中點.連結

,

在平面內的射影,

是二面角的平面角.

中,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面,

平面平面

,垂足為

平面平面,

平面

的長即為點到平面的距離.

由(Ⅰ)知,又,且,

平面

平面

中,,

到平面的距離為

解法二:

(Ⅰ),

,

平面

平面,

(Ⅱ)如圖,以為原點建立空間直角坐標系

,

,

中點,連結

,,

,

是二面角的平面角.

,

二面角的大小為

(Ⅲ),

在平面內的射影為正的中心,且的長為點到平面的距離.

如(Ⅱ)建立空間直角坐標系

,

的坐標為

到平面的距離為

17.(共13分)

解:(Ⅰ)記甲、乙兩人同時參加崗位服務為事件,那么,

即甲、乙兩人同時參加崗位服務的概率是

(Ⅱ)記甲、乙兩人同時參加同一崗位服務為事件,那么

所以,甲、乙兩人不在同一崗位服務的概率是

(Ⅲ)隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務,

所以,的分布列是

1

3

 

18.(共13分)

解:

,得

,即時,的變化情況如下表:

0

,即時,的變化情況如下表:

0

所以,當時,函數(shù)上單調遞減,在上單調遞增,

上單調遞減.

時,函數(shù)上單調遞減,在上單調遞增,在上單調遞減.

,即時,,所以函數(shù)上單調遞減,在上單調遞減.

19.(共14分)

解:(Ⅰ)由題意得直線的方程為

因為四邊形為菱形,所以

于是可設直線的方程為

因為在橢圓上,

所以,解得

兩點坐標分別為

,,,

所以

所以的中點坐標為

由四邊形為菱形可知,點在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因為四邊形為菱形,且,

所以

所以菱形的面積

由(Ⅰ)可得,

所以

所以當時,菱形的面積取得最大值

20.(共13分)

(Ⅰ)解:,

;

,

(Ⅱ)證明:設每項均是正整數(shù)的有窮數(shù)列,

,,,,

從而

,

所以

同步練習冊答案