題目列表(包括答案和解析)
已知中心在坐標原點,焦點在
軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點
(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。
第一問中,可設(shè)橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標準方程為![]()
第二問中,
假設(shè)存在這樣的直線
,設(shè)
,MN的中點為![]()
因為|ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范圍。
(Ⅰ) 可設(shè)橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標準方程為![]()
(Ⅱ) 假設(shè)存在這樣的直線
,設(shè)
,MN的中點為![]()
因為|ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得
……② ……………………9分
則
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
綜上(i)(ii)可知,存在這樣的直線
,其斜率k的取值范圍是![]()
已知函數(shù)
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當(dāng)
時,
,則
。
依題意得:
,即
解得
第二問當(dāng)
時,
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
(Ⅰ)當(dāng)
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時,
,令
得![]()
當(dāng)
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當(dāng)
時,
.當(dāng)
時,
,
最大值為0;
當(dāng)
時,
在
上單調(diào)遞增!
在
最大值為
。
綜上,當(dāng)
時,即
時,
在區(qū)間
上的最大值為2;
當(dāng)
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù)
,曲線
上存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
如圖,已知直線
(
)與拋物線
:
和圓
:
都相切,
是
的焦點.
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)
是
上的一動點,以
為切點作拋物線
的切線
,直線
交
軸于點
,以
、
為鄰邊作平行四邊形
,證明:點
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點
所在的定直線為
, 直線
與
軸交點為
,連接
交拋物線
于
、
兩點,求△
的面積
的取值范圍.
![]()
【解析】第一問中利用圓
:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即
,解得
(
舍去)
設(shè)
與拋物線的相切點為
,又
,得
,
.
代入直線方程得:
,∴
所以
,![]()
第二問中,由(Ⅰ)知拋物線
方程為
,焦點
. ………………(2分)
設(shè)
,由(Ⅰ)知以
為切點的切線
的方程為
.
令
,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴
因為
是定點,所以點
在定直線![]()
第三問中,設(shè)直線
,代入
得
結(jié)合韋達定理得到。
解:(Ⅰ)由已知,圓
:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即
,解得
(
舍去). …………………(2分)
設(shè)
與拋物線的相切點為
,又
,得
,
.
代入直線方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線
方程為
,焦點
. ………………(2分)
設(shè)
,由(Ⅰ)知以
為切點的切線
的方程為
.
令
,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴
因為
是定點,所以點
在定直線
上.…(2分)
(Ⅲ)設(shè)直線
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是![]()
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線
的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到
,又因為
,這樣可知得到
。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為
…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關(guān)系是
,結(jié)合
,解得。
(2)由
,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com