題目列表(包括答案和解析)
在△
中,∠
,∠
,∠
的對邊分別是
,且
.
(1)求∠
的大;(2)若
,
,求
和
的值.
【解析】第一問利用余弦定理得到
第二問
(2) 由條件可得 ![]()
將
代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
如圖,已知直線
(
)與拋物線
:
和圓
:
都相切,
是
的焦點.
(Ⅰ)求
與
的值;
(Ⅱ)設
是
上的一動點,以
為切點作拋物線
的切線
,直線
交
軸于點
,以
、
為鄰邊作平行四邊形
,證明:點
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點
所在的定直線為
, 直線
與
軸交點為
,連接
交拋物線
于
、
兩點,求△
的面積
的取值范圍.
![]()
【解析】第一問中利用圓
:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即
,解得
(
舍去)
設
與拋物線的相切點為
,又
,得
,
.
代入直線方程得:
,∴
所以
,![]()
第二問中,由(Ⅰ)知拋物線
方程為
,焦點
. ………………(2分)
設
,由(Ⅰ)知以
為切點的切線
的方程為
.
令
,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴
因為
是定點,所以點
在定直線![]()
第三問中,設直線
,代入
得
結合韋達定理得到。
解:(Ⅰ)由已知,圓
:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即
,解得
(
舍去). …………………(2分)
設
與拋物線的相切點為
,又
,得
,
.
代入直線方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線
方程為
,焦點
. ………………(2分)
設
,由(Ⅰ)知以
為切點的切線
的方程為
.
令
,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴
因為
是定點,所以點
在定直線
上.…(2分)
(Ⅲ)設直線
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是![]()
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關系是
,結合
,解得。
(2)由
,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數(shù)關系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com