欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(3)若對任意且..試證明存在. 查看更多

 

題目列表(包括答案和解析)

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2011=2009?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2011=2009?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2012=-2011?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

定義數(shù)列{xn},如果存在常數(shù)p,使對任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動數(shù)列”.
(1)設an=2n-1,數(shù)學公式,n∈N*,判斷{an}、{bn}是否為“p-擺動數(shù)列”,并說明理由;
(2)設數(shù)列{cn}為“p-擺動數(shù)列”,c1>p,求證:對任意正整數(shù)m,n∈N*,總有c2n<c2m-1成立;
(3)設數(shù)列{dn}的前n項和為Sn,且數(shù)學公式,試問:數(shù)列{dn}是否為“p-擺動數(shù)列”,若是,求出p的取值范圍;若不是,說明理由.

查看答案和解析>>

已知為兩個正數(shù),且,設,時,

(Ⅰ)求證:數(shù)列是遞減數(shù)列,數(shù)列是遞增數(shù)列;

(Ⅱ)求證:;

(Ⅲ)是否存在常數(shù)使得對任意,有,若存在,求出的取值范圍;若不存在,試說明理由.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當且僅當 時等號成立。)

  (當且僅當 時等號成立。)

17.解:(1)由已知得 解得.設數(shù)列的公比為,

,可得.又,可知,即

解得. 由題意得.  .故數(shù)列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

<var id="cfrw5"><pre id="cfrw5"><bdo id="cfrw5"></bdo></pre></var>

<listing id="cfrw5"><track id="cfrw5"><form id="cfrw5"></form></track></listing>
<source id="cfrw5"></source>

<td id="cfrw5"><tbody id="cfrw5"><pre id="cfrw5"></pre></tbody></td>

    20081226

    (2)

      由

    分別令,的單調增區(qū)間是(開閉區(qū)間均可)。

    (3) 列表如下:

    0

    0

    1

    0

    ―1

    0

    19.解:(I)由,則.

    兩式相減得. 即.          

    時,.∴數(shù)列是首項為4,公比為2的等比數(shù)列.

    (Ⅱ)由(I)知.∴            

    ①當為偶數(shù)時,,

    ∴原不等式可化為,即.故不存在合條件的.      

    ②當為奇數(shù)時,.

    原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

    20.解:(1)依題意,得

       (2)令

    在此區(qū)間為增函數(shù)

    在此區(qū)間為減函數(shù)

    在此區(qū)間為增函數(shù)

    處取得極大值又

    因此,當

    要使得不等式

    所以,存在最小的正整數(shù)k=2007,

    使得不等式恒成立!7分

      (3)(方法一)

         

    又∵由(2)知為增函數(shù),

    綜上可得

    (方法2)由(2)知,函數(shù)

    上是減函數(shù),在[,1]上是增函數(shù)又

    所以,當時,-

    又t>0,

    ,且函數(shù)上是增函數(shù),

     

    綜上可得

    21.解:(1) 

    ,

    函數(shù)有一個零點;當時,,函數(shù)有兩個零點。

       (2)假設存在,由①知拋物線的對稱軸為x=-1,∴ 

    由②知對,都有

    又因為恒成立,  ,即,即

    ,

    時,,

    其頂點為(-1,0)滿足條件①,又,

    都有,滿足條件②!啻嬖,使同時滿足條件①、②。

       (3)令,則

    ,

    內必有一個實根。即

    使成立。

     

     

     

     

     

    <small id="cfrw5"></small>

    <td id="cfrw5"></td>