欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(2)是否存在最小的正整數(shù)k.使得不等式恒成立?如果存在.請求出最小的正整數(shù)k,如果不存在.請說明理由, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)為切點的切線傾斜角為.

(1)求m,n的值;

(2)是否存在最小的正整數(shù)k,使得不等式恒成立?若存在,求出最小的正整數(shù)k,否則請說明理由。

查看答案和解析>>

已知數(shù)列是其前n項的和,且

(I)求數(shù)列的通項公式;

(II)設(shè),是否存在最小的正整數(shù)k,使得對于任意的正整數(shù)n,有恒成立?若存在,求出k的值;若不存在,說明理由

查看答案和解析>>

(本小題共13分)

設(shè)數(shù)列的通項公式為. 數(shù)列定義如下:對于正整數(shù)m,是使得不等式成立的所有n中的最小值。

(Ⅰ)若,求

(Ⅱ)若,求數(shù)列的前2m項和公式;w.w.w.k.s.5.u.c.o.m    

(Ⅲ)是否存在pq,使得?如果存在,求pq的取值范圍;如果不存在,請說明理由。

查看答案和解析>>

已知在函數(shù)的圖象上以N(1,n)為切點的切線的傾斜角為

   (Ⅰ)求m、n的值;

   (Ⅱ)是否存在最小的正整數(shù)k,使得不等式恒成立?如果存在,請求出最小的正整數(shù)k;如果不存在,請說明理由;

   (Ⅲ)(文科不做)求證: 

查看答案和解析>>

已知函數(shù)的圖象上以N(1,n)為切點的切線傾斜角為.

   (1)求m,n的值;

   (2)是否存在最小的正整數(shù)k,使得不等式恒成立?若存在,求出最小的正整數(shù)k,否則請說明理由.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當(dāng)且僅當(dāng) 時等號成立。)

  (當(dāng)且僅當(dāng) 時等號成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為,

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

      <blockquote id="ku5hd"></blockquote>

      20081226

      (2)

        由

      分別令的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

      (3) 列表如下:

      0

      0

      1

      0

      ―1

      0

      19.解:(I)由,則.

      兩式相減得. 即.          

      時,.∴數(shù)列是首項為4,公比為2的等比數(shù)列.

      (Ⅱ)由(I)知.∴            

      ①當(dāng)為偶數(shù)時,,

      ∴原不等式可化為,即.故不存在合條件的.      

      ②當(dāng)為奇數(shù)時,.

      原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

      20.解:(1)依題意,得

         (2)令

      當(dāng)在此區(qū)間為增函數(shù)

      當(dāng)在此區(qū)間為減函數(shù)

      當(dāng)在此區(qū)間為增函數(shù)

      處取得極大值又

      因此,當(dāng)

      要使得不等式

      所以,存在最小的正整數(shù)k=2007,

      使得不等式恒成立!7分

        (3)(方法一)

           

      又∵由(2)知為增函數(shù),

      綜上可得

      (方法2)由(2)知,函數(shù)

      上是減函數(shù),在[,1]上是增函數(shù)又

      所以,當(dāng)時,-

      又t>0,

      ,且函數(shù)上是增函數(shù),

       

      綜上可得

      21.解:(1) 

      當(dāng),

      函數(shù)有一個零點;當(dāng)時,,函數(shù)有兩個零點。

         (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

      由②知對,都有

      又因為恒成立,  ,即,即

      ,

      當(dāng)時,

      其頂點為(-1,0)滿足條件①,又,

      都有,滿足條件②。∴存在,使同時滿足條件①、②。

         (3)令,則

      內(nèi)必有一個實根。即

      使成立。

       

       

       

       

       

      1. <dfn id="ku5hd"></dfn>