題目列表(包括答案和解析)
設(shè)A是如下形式的2行3列的數(shù)表,
|
a |
b |
c |
|
d |
e |
f |
滿足性質(zhì)P:a,b,c,d,e,f
,且a+b+c+d+e+f=0
記
為A的第i行各數(shù)之和(i=1,2),
為A的第j列各數(shù)之和(j=1,2,3)記
為
中的最小值。
(1)對如下表A,求
的值
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A形如
|
1 |
1 |
-1-2d |
|
d |
d |
-1 |
其中
,求
的最大值
(3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求
的最大值。
【解析】(1)因為
,
,所以![]()
(2)
,![]()
因為
,所以
,![]()
所以![]()
當(dāng)d=0時,
取得最大值1
(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)
|
a |
b |
c |
|
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數(shù)換成它的相反數(shù),所得數(shù)表
仍滿足性質(zhì)P,并且
,因此,不妨設(shè)
,
,![]()
由
得定義知,
,
,
,
從而![]()
![]()
所以,
,由(2)知,存在滿足性質(zhì)P的數(shù)表A使
,故
的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學(xué)生分析問題解決問題的能力,考查學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力
已知
,函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
在點(1,
)的切線方程;
(2)求函數(shù)
在[-1,1]的極值;
(3)若在
上至少存在一個實數(shù)x0,使
>g(xo)成立,求正實數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中
,那么當(dāng)
時,
又
所以函數(shù)
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當(dāng)
時,
又
∴ 函數(shù)
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當(dāng)
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當(dāng)
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設(shè)
,![]()
對
求導(dǎo),得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數(shù),則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數(shù)
的取值范圍是(![]()
,
)
設(shè)點
是拋物線![]()
![]()
的焦點,
是拋物線
上的
個不同的點(![]()
).
(1) 當(dāng)
時,試寫出拋物線
上的三個定點
、
、
的坐標(biāo),從而使得
;
(2)當(dāng)
時,若
,
求證:
;
(3) 當(dāng)
時,某同學(xué)對(2)的逆命題,即:
“若
,則
.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù)
,試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線
的焦點為
,設(shè)
,
分別過
作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設(shè)
,分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
第三問中①取
時,拋物線
的焦點為
,
設(shè)
,
分別過![]()
作拋物線
的準(zhǔn)線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線
的焦點為
,設(shè)
,
分別過
作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.由拋物線定義得
![]()
![]()
因為
,所以
,
故可取![]()
![]()
滿足條件.
(2)設(shè)
,分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
又因為![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時,拋物線
的焦點為
,
設(shè)
,
分別過![]()
作拋物線
的準(zhǔn)線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個當(dāng)
時,該逆命題的一個反例.(反例不唯一)
② 設(shè)
,分別過
作
拋物線
的準(zhǔn)線
的垂線,垂足分別為
,
由
及拋物線的定義得
,即
.
因為上述表達(dá)式與點
的縱坐標(biāo)無關(guān),所以只要將這
點都取在
軸的上方,則它們的縱坐標(biāo)都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說明:本質(zhì)上只需構(gòu)造滿足條件且
的一組
個不同的點,均為反例.)
③ 補(bǔ)充條件1:“點
的縱坐標(biāo)
(
)滿足
”,即:
“當(dāng)
時,若
,且點
的縱坐標(biāo)
(
)滿足
,則
”.此命題為真.事實上,設(shè)
,
分別過
作拋物線
準(zhǔn)線
的垂線,垂足分別為
,由
,
及拋物線的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補(bǔ)充條件2:“點
與點![]()
為偶數(shù),
關(guān)于
軸對稱”,即:
“當(dāng)
時,若
,且點
與點![]()
為偶數(shù),
關(guān)于
軸對稱,則
”.此命題為真.(證略)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com