題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:
和直線
,
(1)求圓O和直線
的直角坐標(biāo)方程;(2)當(dāng)
時(shí),求直線
與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)![]()
和
,不等式
恒成立,試求實(shí)數(shù)
的取值范圍.
C
[解析] 由基本不等式,得ab≤
=
=
-ab,所以ab≤
,故B錯(cuò);
+
=
=
≥4,故A錯(cuò);由基本不等式得
≤
=
,即
+
≤
,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)
滿足
,且當(dāng)
時(shí),
,則當(dāng)
時(shí),
的最小值為( )
(A)
(B)
(C)
(D)![]()
.過點(diǎn)
作圓
的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、
二、
9.16 10.2009 11.
12.
13.
14.3
15.②③
三、
16.解:(1)由余弦定理得: 

是以角C為直角的直角三角形.……………………6分
(2)
中
………………①
………………②
②÷①得
,
則
……………………12分
17.解:(1)因?yàn)?sub>
……………………………………(2分)
……………………………………………………(4分)

所以線路信息通暢的概率為
!6分)
(2)
的所有可能取值為4,5,6,7,8。

……………………………………………………………(9分)
∴
的分布列為

4
5
6
7
8
P





…………………………………………………………………………………………(10分)
∴E
=4×
+5×
+6×
+7×
+8×
=6。……………………(12分)
18.解:解法一:(1)證明:連結(jié)OC,
∵
ABD為等邊三角形,O為BD的中點(diǎn),∴AO
垂直BD。………………………………………………………………(1分)
∴ AO=CO=
!2分)
在
AOC中,AC=
,∴AO2+CO2=AC2,
∴∠AOC=900,即AO⊥OC。
∴BD
OC=O,∴AO⊥平面BCD!3分)
(2)過O作OE垂直BC于E,連結(jié)AE,
∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。
∴AE⊥BC。
∠AEO為二面角A―BC―D的平面角!7分)
在Rt
AEO中,AO=
,OE=
,
∠
,
∴∠AEO=arctan2。
二面角A―BC―D的大小為arctan2。
(3)設(shè)點(diǎn)O到面ACD的距離為
∵VO-ACD=VA-OCD,
∴
。
在
ACD中,AD=CD=2,AC=
,
。
|